

Contents lists available at ScienceDirect

Solar Energy Materials & Solar Cells

journal homepage: www.elsevier.com/locate/solmat

Electrochemically deposited Cu₂O thin films on thermally oxidized Cu₂O sheets for solar cell applications

Yuki Nishi, Toshihiro Miyata*, Tadatsugu Minami

Optoelectronic Device System R&D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, Japan

ARTICLE INFO

Article history: Received 17 March 2016 Received in revised form 10 June 2016 Accepted 10 June 2016 Available online 4 July 2016

Keywords: Cu₂O Na-doped Cu₂O Degenerated p-type Cu₂O:Na Solar cell Heterojunction solar cell Thin film Cu₂O sheet Oxide semiconductor Multi-component oxide AZO Electrochemical deposition Epitaxial growth

1. Introduction

Cu₂O is an attractive selection for the active layer of solar cells because copper (Cu), the primary raw material of Cu₂O, is nontoxic and inexpensive, and Cu₂O is a direct transition semiconductor with a bandgap of 2.1 eV. Furthermore, heterojunction solar cells using Cu₂O could theoretically realize a photoelectric conversion efficiency of 20% (under AM1 illumination) [1–3]. On the other hand, because the intrinsic defect (Cu Vacancy) of Cu₂O functions as an acceptor, Cu₂O shows p-type conductivity. In other words, it would be extremely difficult to realize n-type Cu_2O [4,5]. Consequently, research on Cu₂O solar cells focuses on the R&D of n-type semiconductor/p-type Cu₂O heterojunction solar cells consisting of p-type Cu₂O active layers and other n-type semiconductor materials [6,7]. The production of n-type semiconductor/p-type Cu₂O heterojunction solar cells reported in a large number of scientific papers used, as the active layer, p-type Cu₂O sheets fabricated by thermal oxidation or Cu₂O thin films prepared with an electrochemical deposition (ECD) method [8-18].

* Corresponding author. E-mail address: yuki20031122000@hotmail.co.jp (Y. Nishi).

http://dx.doi.org/10.1016/j.solmat.2016.06.013 0927-0248/© 2016 Elsevier B.V. All rights reserved.

ABSTRACT

This paper deals with homoepitaxial growth of Cu₂O thin films using the electrochemical deposition (ECD) method. It also discusses the photovoltaic properties of solar cells that use the active layer of p-type Cu₂O thin film prepared by epitaxial growth. Such a film was formed at 70 °C on a degenerated p-type Cu₂O:Na (p⁺-type Cu₂O: Na) substrate, and this film produced on a substrate with a (110) plane orientation was oriented only in the (110) plane. The crystallite size of the produced Cu₂O thin film (58.8 nm) was larger than that of the film produced on FTO (SnO₂: F) (14.6 nm). A photoelectric conversion efficiency of 2.36% was achieved for the AZO/p-type Cu₂O thin film/p⁺-type Cu₂O:Na hetero-junction solar cell in which a degenerated Al-doped ZnO (AZO) thin film was prepared as the transparent electrode layer on the Cu₂O thin film by pulse laser deposition. Furthermore, photoelectric conversion efficiency of 4.41% was achieved for the AZO/n-type Ga_{0.975}Al_{0.025}O/p-type Cu₂O(p⁺-type Cu₂O:Na hetero-junction solar cell with n-type Ga_{0.975}Al_{0.025}O film inserted between the AZO and p-type Cu₂O thin film. This clearly shows that the Cu₂O thin film produced by epitaxial growth on a p⁺-type Cu₂O:Na (p⁺-type Cu₂O: Na) substrate is superior as an active layer.

© 2016 Elsevier B.V. All rights reserved.

Among n-type semiconductor/p-type Cu₂O heterojunction solar cells that use Cu₂O thin film as the active layer produced by EDC, Isaki et al. reported a 1.28% conversion efficiency for p-type Cu₂O/n-type ZnO/FTO solar cells in 2007 [8]. These cells were fabricated by growing an n-type ZnO film and Cu₂O thin film (mobility $[\mu]$: 1.8 cm²/V s) on a glass substrate with an F-doped SnO₂ (FTO) transparent electrode [8]. In 2013, Fujimoto reported that a conversion efficiency of 1.43% was reached by optimizing the deposition process used to produce the above heterojunction solar cells [9]. The highest conversion efficiency for solar cells using Cu₂O thin films as the active layer was reported by a research group led primarily by Buonassisi [16,17]. They prepared a Cu₂O thin film (μ : 8 cm²/V s) by ECD on a quartz substrate with Au electrodes deposited. After that, they fabricated heterojunction solar cells where various types of n-type semiconductor layers (ZnO, Zn–Sn–O (ZTO), Ga₂O₃) and Al-doped ZnO (AZO) transparent electrodes were grown at low temperature by the Atomic Layer Deposition (ALD) method. Conversion efficiencies of 3.06% and 3.97% were reported for MgF₂/AZO/ZTO/Cu₂O and MgF₂/AZO/ Ga₂O₃/Cu₂O heterostructure solar cells, respectively [16,17]. It has been reported that because the conversion efficiency of solar cells is significantly affected by the crystallinity of Cu₂O, Therefore, it is important to use a high-quality Cu₂O thin film as the active layer [9]. Crystallinity and hole mobility of Cu₂O thin film significantly affect the diffusion length of the decimal carrier. Consequently, it is indispensable to use a Cu₂O thin film having a superior crystallinity (high hole mobility) in order to realize a high conversion efficiency of Cu₂O solar cells. A high hole mobility ([μ]: 90 cm²/V s) of Cu₂O thin film produced by epitaxial growth on an MgO substrate using the PLD method was achieved by Hosono et al. in 2008 [19]. This means high hole mobility and high-quality film properties can be obtained for Cu₂O thin films through epitaxial growth. Thus, we can expect improvement in the conversion efficiency by using Cu₂O thin film, produced by epitaxial growth, having high crystallinity and hole mobility for the active layer. The ECD method of depositing p-type Cu₂O thin films is widely known. At present, however, there has been no report of epitaxial growth on a p⁺-type Cu₂O:Na substrate by ECD.

This paper describes a homoepitaxial growth of Cu₂O thin films by ECD on a degenerated p⁺-type Cu₂O:Na substrate with 10^{19} cm⁻³ hole concentration (p). Properties of the Cu₂O thin film produced were evaluated using a scanning electron microscope (SEM) and X-ray diffraction equipment (XRD). In addition, a photovoltaic properties of n-type semiconductor/p-type Cu₂O heterojunction solar cells using the p-type Cu₂O thin film produced for the active layer were studied.

2. Experimental

P-type Cu₂O thin film was prepared on a p⁺-type Cu₂O:Na substrate by ECD. A degenerated p⁺-type Cu₂O:Na sheet used both as the electrode and as the substrate was fabricated by heating a p⁺-type Cu₂O sheet, which was fabricated by thermal oxidation of Cu together with an Na compound at 800 °C for 30 h in an Ar atmosphere, cooling down to 500 °C, and then quick-cooling in the atmosphere [20]. Typical electrical properties (at room temperature) of the fabricated p^+ -type Cu₂O:Na substrate are a hole concentration of $2-5 \times 10^{19}$ cm⁻³, a mobility (μ) of 5–8 cm²/V s, and a specific resistance (p) of 0.02–0.04 Ω cm. Before using it as an electrode, the p^+ -type Cu₂O:Na substrate was wet-etched to remove the CuO layer on the surface [21]. The technique reported by McShane et al. was referred to for the production conditions (solution, current density) of p-type Cu₂O thin film [22]. For the growth, a mixed aqueous solution of NaOH, CuSO₄ (concentration of 0.20 mol/l), and CH₃CH(OH)COOH (concentration of 3.00 mol/l) was used, and the pH was adjusted to 12.0. A Pt plate was used for the material for the positive electrode and the p⁺-type Cu₂O:Na substrate was used for the negative electrode, or F-doped SnO₂ (FTO) was used as the reference. Cu₂O thin film was deposited by applying voltage between the electrodes with a constant current density of 0.25 mA/cm² at a solution temperature of 70 °C. Properties of the Cu₂O thin film produced were evaluated using SEM and XRD equipment. In order to evaluate film properties of the thin film produced by ECD, photovoltaic properties were evaluated by fabricating an n-type semiconductor/p-type Cu₂O heterojunction solar cell consisting of a p-type Cu₂O thin film and an n oxide semiconductor, Fig. 1 shows the two types of solar cells fabricated in the research. Fig. 1(a) shows the cross-sectional structure of an AI-doped ZnO(n⁺-type AZO)/p-type Cu₂O/p⁺-type Cu₂O:Na heterojunction solar cell. A 200- μ m-thick degenerated p⁺-type Cu₂O: Na sheet was used as the substrate. A p-type Cu₂O film was prepared as the active layer on p⁺-type Cu₂O:Na, and AZO was further prepared both as the n-type semiconductor layer and as the transparent electrode layer on top of it. Fig. 1(b) shows an AZO/ntype $Ga_{0.975}Al_{0.025}O/p$ -type Cu_2O/p^+ -type Cu_2O :Na heterojunction solar cell. The $Ga_{1-X}Al_XO(=Al/[Ga+Al])$ thin film functions as the n-type layer. Gold (Au) is prepared as the rear electrode on the back side of each solar cell. Next, an n-type Ga_{0.975}Al_{0.025}O thin film or an AZO thin film was deposited on the deposited p-type

Cu₂O film by the PLD method using an ArF excimer laser (wavelength: 193 nm, energy: 350 mJ, repetition frequency: 20 Hz). An n-type Ga_{0.975}Al_{0.025}O sintered target and an AZO sintered target were prepared by forming the mixed powders using a coldpressing method followed by sintering. N-type Ga_{0.975}Al_{0.025}O thin films or AZO films were prepared at room temperature (not heated intentionally) on p-type Cu₂O thin films. AZO thin films of 200-300 nm in thickness were prepared at an oxygen pressure of 0.2 Pa. Electrical properties of AZO thin films were evaluated under the previously mentioned device fabrication conditions using the film simultaneously deposited on OA-10 glass (Nippon Electric Glass Co., Ltd.). The AZO film produced has a ρ of 0.8– $1 \times 10^{-4} \Omega$ cm and an electron concentration (n) of 5×10^{20} cm⁻³. The photovoltaic properties of the Cu₂O-based solar cells (electrode area: 3.14 mm²) were evaluated by exposing only the AZO transparent electrode area to AM 1.5 G solar illumination (100 mW/cm²) at 25 °C.

3. Results and discussion

3.1. Epitaxial growth of Cu_2O thin film on p^+ -type- Cu_2O :Na substrate

A Cu₂O thin film of 2.0 μ m in thickness was prepared on a p⁺type Cu₂O:Na substrate with a constant current density of 0.25 mA/cm². The film was also deposited on an FTO coated glass (FTO/glass) under the same conditions. Fig. 2(a) shows an SEM image of the p^+ -type Cu₂O:Na substrate surface. Fig. 2(b) and (c) show an surface and a cross-sectional SEM image of the Cu₂O thin film/p⁺-type Cu₂O:Na substrate after the thin film was prepared, respectively. Fig. 2(d) also shows an SEM image of the FTO/ glass surface. Fig. 2(e) shows the p-type Cu₂O thin film/FTO/glass after the thin film was prepared, and Fig. 2(f) shows a cross-sectional SEM image. Cu₂O thin films were prepared on all of the substrates, but a comparison of Fig. 2(b) and (e) shows that the morphologies of the film surfaces after deposition differ significantly depending on the substrate. Thus, the crystallinity of the films is possibly affected by the substrates used for deposition. To evaluate the crystallographic properties of the films, the orientation of planes was first evaluated using the XRD method (out-ofplane). Fig. 3(I), (II) and (III) show X-ray diffraction profiles of the Cu_2O thin film/p⁺-type Cu_2O :Na, the p⁺-type Cu_2O :Na substrates, and the p-type Cu₂O thin film/FTO/glass substrates, respectively. The Cu₂O thin film prepared on the p⁺-type Cu₂O:Na substrate shown in Fig. 3(I) showed (110) plane orientation only. As shown in Fig. 3(II), the p^+ -type Cu₂O:Na substrate also showed (110) plane orientation only. It is therefore assumed that the Cu₂O thin film deposited has grown in the same orientation as that of the p⁺-type Cu₂O:Na substrate. On the other hand, Cu₂O thin film prepared on the FTO/glass shows not only the diffraction peak of the FTO (SnO₂) substrate but also the diffraction peak originating from the Cu₂O thin film were observed. In addition, the Cu₂O thin film produced on the FTO/glass was non-oriented. These results suggest that this method consequently include the crystallinity of the substrate layer. In order to study the crystallographic properties of the Cu₂O thin films, they were evaluated by the grazingincidence X-ray diffraction method. Fig. 4(I) shows a diffraction profile of the Cu₂O thin film/p⁺-type Cu₂O:Na substrate measured by the grazing-incidence X-ray diffraction method with an X-ray incidence angle of 0.4°. Fig. 4(II) also shows the X-ray diffraction profile for a p^+ -type Cu₂O:Na substrate, while Fig. 4(III) shows the X-ray diffraction spectrum of a p-type Cu₂O thin film/FTO/glass substrate. In all cases, diffraction peaks originating from the Cu₂O were observed, as clearly shown in the figures. The (110) crystal plane was only detected for the Cu₂O thin film deposited on the

Download English Version:

https://daneshyari.com/en/article/77528

Download Persian Version:

https://daneshyari.com/article/77528

Daneshyari.com