

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

CrossMark

Preparation of LiPF₆ using ClF₃ below room temperature

^a Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan ^b Central Glass Co., Ltd., 5253 Oaza Okibu, Ube, Yamaguchi 755-0001, Japan

ARTICLE INFO

Article history: Received 12 November 2013 Received in revised form 31 December 2013 Accepted 14 January 2014 Available online 5 February 2014

Keywords: Chlorine trifluoride Fluorine Electrolyte Lithium hexafluorophosphate

ABSTRACT

A reaction among LiF, P (red phosphorous), and ClF₃ was conducted to prepare LiPF₆ at -20 to 100 °C. First, P reacts with ClF₃ to form PF₅. Then PF₅ reacts with LiF to form LiPF₆. The reaction preparing LiPF₆ from LiF, P, and ClF₃ can take place at less than 0 °C, although the reaction using F₂ instead of ClF₃ did not proceed well at such a lower reaction temperature. The LiPF₆ preparation reaction can be promoted by increasing the reaction temperature. However, if the reaction temperature increases, some side reaction and/or decomposition reaction take place. The optimal conditions to obtain highly pure LiPF₆ in this study were 0 °C reaction temperature and 5 h reaction time for the composition of LiF:P:ClF₃ = 1:1:2 (mol) as the starting mixture.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Lithium hexafluorophosphate $(LiPF_6)$ is the most popular supporting salt for electrolyte solutions in lithium secondary batteries now. The solubility of LiPF₆ into the organic solvents used for lithium ion batteries is higher than that of other compounds such as $LiBF_4$ and $LiClO_4$ [1]. Therefore, the electrolyte solution containing LiPF₆ exhibits high electric conductivity. In addition, LiPF₆ is stable against the redox reaction in the lithium ion battery [2]. The electrolyte solution containing LiPF₆, however, contains HF as an impurity. In fact, HF contamination degrades the performance of lithium ion batteries [2,3]. Therefore, numerous efforts have been undertaken to develop a process by which highly pure LiPF₆ is obtainable. Several methods are used in industry. For example, LiF is dissolved into liquid anhydrous hydrogen fluoride (L-AHF) and PF₅ gas is supplied into this system [4]. LiPF₆ is generated and precipitated as a crystal. Alternatively, LiF and PCl₃ are reacted in L-AHF to obtain the LiPF₆ crystal [5]. Generally AHF is used as the medium for these methods (AHF method). However, HF can remain in the products produced using these methods. Although the amount of HF in the product is extremely small, its presence causes deliguescence of the products because HF gives hygroscopicity to the product and promotes the hydrolysis of LiPF₆ to form LiPOxFy and HF. The preparation of LiPF₆ without AHF can be addressed to solve this problem. Among them, the reaction among LiF, P, and F₂ is the simplest AHF-free method to prepare LiPF₆. A previous study demonstrated a new process to prepared LiPF₆ in which the mixture of LiF and P is heated in F₂ gas at 300 °C (F₂ method). Highly pure LiPF₆ was obtained using this F₂ method: purer than that obtained using L-AHF method. However, with F₂ method, it is difficult to control the reaction because the exothermal reaction between P and F₂ proceeds vigorously. To maintain the temperature of the reaction system, for example, F₂ gas must be introduced into the system very slowly [6].

In this study, ClF_3 was used instead of F_2 in the reaction system among LiF, P, and F_2 to assess the possibility of preparing $LiPF_6$ at a reaction temperature below room temperature.

2. Results and discussion

The FT-IR profile of the gas product after the reaction among LiF, P, and ClF₃ in the molar ratio of 1:1:2 is shown in Fig. 1. The reaction temperature and time were 25 °C and 5 h, respectively. From comparison of the profiles of ClF₃ and the product gas, peaks appeared at 1026 cm⁻¹ (strong), 941 cm⁻¹ (strong), and 532 cm⁻¹ (weak) after the reaction. These peaks correspond to those of PF₅ gas [7–10]. Excess ClF₃ for P remained in the reactor after the reaction was also observed at 833 cm⁻¹ (strong) in the profile for the product. Red phosphorous was converted to PF₅ completely. No PF₃ remained after the reaction because no peak was observed at 833 cm⁻¹ (strong) and 892 cm⁻¹ (strong). Using T% values at 833 cm⁻¹ for ClF₃, the absorbance of ClF₃ for pure ClF₃ to that for ClF₃ after the reaction was calculated. Results show that 83% of ClF₃

^{*} Corresponding author. Tel.: +81 776 27 8910; fax: +81 776 27 8955. *E-mail address:* yonezawa@matse.u-fukui.ac.jp (S. Yonezawa).

^{0022-1139/\$ -} see front matter © 2014 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jfluchem.2014.01.010

Fig. 1. IR spectra of (a) raw CIF₃ gas and (b) gas product prepared after reaction at RT, 5 h (■, CIF₃; ●, PF₅).

Fig. 2. XRD profiles of LiPF₆ prepared under various conditions: (a) 25 °C, 1 h; (b) 0 °C, 1 h; (c) 25 °C, 5 h; (d) 0 °C, 5 h (\bullet , LiPF₆; \blacktriangle , LiF; \blacklozenge , cover film).

loaded to the reactor reacted with P. This ratio corresponds to the molar ratio of P and ClF₃ to 1:1.7 (P:F:Cl = 1:5:2). PF_5 and Cl_2 must be produced stoichiometrically. Finally, a white solid product was obtained. Therefore, red phosphorous remained in the solid product, which is consistent with the calculation for PF_5 formation described above.

Fig. 2 presents XRD profiles of the solid product of the reaction of LiF, P, and F_2 at 25 °C or 0 °C in 1 or 5 h. Some peaks correspond to LiPF₆ (solid circle) and LiF (solid triangle) in Fig. 2. Peaks attributable to LiPF₆ strongly appeared, meaning that the major product must be LiPF₆ with a small amount of LiF included in it. Completely, PF₅ should be generated from the reaction between P and ClF₃ first. Then PF₅ is expected to react with LiF in the presence of ClF₃ to produce LiPF₆. The white solid product was not powder anymore. It was condensed just as snow hardens into ice. The intensity ratios of the peaks attributable to LiPF₆ (24.9°) and LiF (44.5°) in Fig. 2, *I*_{LiPF6/LiF} are presented in Table 1.

The larger value of $I_{\text{LiPF6/LiF}}$ indicates a larger yield of LiPF₆. When the reaction time was set at 1 h, $I_{\text{LiPF6/LiF}}$ of the product at 25 °C was more than two times larger than that at 0 °C. However, for 5 h reaction time, both $I_{\text{LiPF6/LiF}}$ values for 0 and 25 °C increased greatly compared to that of 1 h reaction. There was less than 10% difference between $I_{\text{LiPF6/LiF}}$ values for 0 and 25 °C for 5 h reaction. Therefore, 5 h is apparently sufficient for the progress of the LiPF₆ formation process even if the reaction is conducted at 0 °C. Based on these results, the reaction time was determined as 5 h. A higher reaction rate. XRD profiles of the products prepared at 0 °C, 25 °C, 50 °C and 100 °C are depicted in Fig. 3. Considering that $I_{\text{LiPF6/LiF}}$ values for 50 °C and 100 °C were 23.51 and 13.49 respectively,

Table 1

Intensity ratio of the peaks because of LiPF₆ (24.9°) and LiF (44.5°) for the products under various preparation conditions.

Conditions (reaction temperature, time)	Intensity ratio $(I_{\text{LiPF6/LiF}})$
25 °C, 1 h	2.76
0°C, 1 h	1.21
25 °C, 5 h	18.12
0°C, 5 h	17.32

the yield of LiPF₆ increased to the reaction temperature of 50 °C and decreased over 50 °C. Apparently, 5 h is sufficient to complete the reaction to form LiPF₆ at temperatures higher than 0 °C. Some decomposition process might occur at higher temperatures such as 100 °C. Because the dissociation of LiPF₆ into LiF and PF₅ occurs at temperatures higher than 150 °C [11], the decomposition at less than 100 °C observed here was not attributable to the dissociation of LiPF₆. Some small peaks are apparent in Fig. 3(d), but these peaks did not appear in Fig. 3(a)–(c). The reaction between LiPF₆ and impurities, O₂ and H₂O for example, can be promoted by increasing the reaction temperature. Therefore, the preparation at –20 °C was conducted to infer the decomposition of the product. The XRD profiles of the products prepared at –20 °C in 5 h are shown in Fig. 4.

The profiles of products prepared at -20 °C in 5 h resemble those obtained at 0 or 25 °C. The peak intensities in Fig. 4, however, were extremely small compared to those in Fig. 3. The ratio, $I_{\text{LiPF6}/}$ LiF of the product prepared at -20 °C was 14.76, which was consistent with the values of the products prepared at other temperatures. Briefly, the amount of the product was extremely small in case of the reaction at -20 °C, whereas the yield for the reaction at -20 °C was similar to that at 0, 25 and 50 °C. If the LiF solid sample simply reacts with PF₅ to form LiPF₆, this phenomenon would not be explained well. LiF might have some interaction with ClF₃ (e.g., a LiClF₄-like arrangement is possible on the LiF surface) and this might influence the reaction. However, no peak was distinguished that corresponds to LiClF₄. The peak attributable to LiF was extremely small in Fig. 4. This yield-related result might be simply attributable to the product crystallinity. The reaction process must be clarified after more quantitative research particularly addressing the behavior of LiF during the reaction. It is noteworthy that the reaction at a temperature lower than -20 °C was not efficient for industrial mass production. Optimal conditions to obtain pure LiPF₆ here were the reaction temperature of 0-50 °C and reaction time of 5 h.

Fig. 5 shows XRD profiles of $LiPF_6$ prepared using F_2 gas or ClF_3 gas. The reaction temperature and time were 25 °C and 5 h. As

Fig. 3. XRD profiles of LiPF₆ prepared under various conditions: (a) 0 °C, 5 h; (b) 25 °C, 5 h; (c) 50 °C, 5 h; (d) 100 °C, 5 h (\blacklozenge , LiPF₆; \blacklozenge , LiF; \diamondsuit , cover film).

Download English Version:

https://daneshyari.com/en/article/7753213

Download Persian Version:

https://daneshyari.com/article/7753213

Daneshyari.com