Contents lists available at SciVerse ScienceDirect

CrossMark

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

heterocycles - 4-fluoropyrimido[1,6-a]benzimidazol-1(2H)-ones.

Synthesis of fluorinated pyrimidinones

Mikhail D. Kosobokov^a, Marina I. Struchkova^a, Dmitry E. Arkhipov^b, Alexander A. Korlyukov^b, Alexander D. Dilman^{a,*}

^a N.D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation ^b A.N. Nesmeyanov Institute of Organoelement Compounds, Vavilov str. 28, 119991 Moscow, Russian Federation

ARTICLE INFO

ABSTRACT

Article history: Received 22 May 2013 Received in revised form 25 June 2013 Accepted 30 June 2013 Available online 10 July 2013

Keywords: Heterocycles Isocyanates Cyclization Pyrimidinones Coupling reaction

1. Introduction

The ability of fluorine to modify biological properties of organic compounds has sparked the interest to partially fluorinated molecules [1]. Since heterocycles are ubiguitous in pharmaceuticals, compounds containing one or two fluorine atoms in the ring have gained significant attention in medicinal chemistry [2]. Among diverse classes of fluorinated heterocycles, derivatives of pyrimidinones and pyrimidinediones have become particularly important exhibiting anti-cancer, antiviral, and antifungal activity [1b,2b,3,4]. Fluorinated uracil and cytosine were the first examples of successful drugs of this type followed by numerous analogs (Fig. 1). The conventional synthetic approach toward mono- and difluorinated pyrimidinones involves fluorination of parent heterocycles using elemental fluorine or O-F and N-F reagents [5,6]. An alternative method for the preparation of difluoro-substituted pyrimidinediones (dihydrouracils) based on building-block strategy was suggested, but the method has a limited scope [7].

Herein we describe a general approach for making fluorinated six-membered heterocycles based on coupling of three components – imines, difluoroacetonitrile carbanion, and a reagent with electrophilic multiple bond (Scheme 1). Thus, we have recently described that imines react with difluoro(trimethylsilyl)acetonitrile leading to products **1** [8]. The latter compounds possess a

E-mail addresses: adil25@mail.ru, dilman@ioc.ac.ru (A.D. Dilman).

© 2013 Elsevier B.V. All rights reserved.

A method for the construction of fluorinated pyrimidinones based on the reaction of cyanodifluor-

omethyl-substituted amines with isocyanates is described. The use of ortho-iodophenylisocyanate in

this reaction followed by copper catalyzed intramolecular amination affords fluorinated fused

nucleophilic amine and an electrophilic nitrile group, and reaction of this 1,4-bipolar system with an appropriate double or triple bond is expected to afford heterocyclic molecule. In this work we demonstrate this concept by using isocyanates as the AB component [9]. The process affords pyrimidinones (A = CO, B = NR³) bearing *N*-unsubstituted imino-function, which can be further exploited for constructing more complex heterocyles.

2. Results and discussion

First, the reactions of amines **1** with isocyanates were investigated (Table 1). Due to the presence of fluorine atoms

Fig. 1. Fluorinated pyrimidinones.

^{*} Corresponding author. fax: +7 499 1355328.

^{0022-1139/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jfluchem.2013.06.018

^a Isolated yield.

^b Additionally, *ca.* 10% of heterocycle **3d** was formed.

^c Performed using 3 equiv. of PrNCO.

 R^2

0

Me

Ph

5,72%

[≿]C_{≿N}∕R³

Ar

Ó

F

Fig. 2. The molecular structures of compounds 3a (left) and 7a (right). Non-hydrogen atoms are presented by thermal ellipsoids at 50% probability.

Table 2

Synthesis of fused heterocycles 7.

i: 10% Cul, 10% proline

Cs₂CO₃ (3 equiv), DMF, 90 °C, 2 h

R ¹	R ²	1	2	Time for $\boldsymbol{1} \to \boldsymbol{2}, \ h$	Yield of 2 , ^a %	7	Yield of 7 , ^a %
Ph	Me	1a	2f	2	94	7a	81
S	Bn	1b	2g	5	67	7b	80
C - zz	Me	1c	2h	2	96	7c	77
1-Naphthyl	Me	1d	2i	2	95	7d	79
4-MeOC ₆ H ₄	Et	1e	2j	3	92	7e ^b	75

^a Isolated yield.

^b Reaction time 5 h.

Download English Version:

https://daneshyari.com/en/article/7753456

Download Persian Version:

https://daneshyari.com/article/7753456

Daneshyari.com