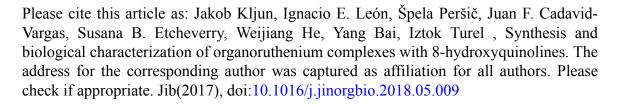
Accepted Manuscript

Synthesis and biological characterization of organoruthenium complexes with 8-hydroxyquinolines

Jakob Kljun, Ignacio E. León, Špela Peršič, Juan F. Cadavid-Vargas, Susana B. Etcheverry, Weijiang He, Yang Bai, Iztok Turel


PII: S0162-0134(18)30044-8

DOI: doi:10.1016/j.jinorgbio.2018.05.009

Reference: JIB 10499

To appear in: Journal of Inorganic Biochemistry

Received date: 22 January 2018 Revised date: 24 April 2018 Accepted date: 16 May 2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Synthesis and biological characterization of organoruthenium complexes with 8-hydroxyquinolines

Jakob Kljun¹, Ignacio E. León^{2,3}, Špela Peršič¹, Juan F. Cadavid-Vargas^{2,3}, Susana B. Etcheverry^{2,3}, Weijiang He⁴, Yang Bai⁴, Iztok Turel^{1,*}

Abstract

In this study we report the synthesis, characterization and a thorough biological evaluation of twelve organoruthenium–8-hydroxyquinolinato (**Ru-hq**) complexes. The chosen **hqH** ligands bear various halogen atoms in different positions which enables to study effect of the substituents on physico-chemical and biological properties. The determined crystal structures of novel complexes expectedly show the cymene ring, a bidentately coordinated deprotonated **hq** and a halide ligand (chlorido or iodido) coordinated to the ruthenium central ion. In previous studies the anticancer potential of organoruthenium complex with 8-hydroxyquinoline ligand clioquinol was well established and we have decided to perform an extended biological evaluation (antibacterial and antitumor activity) of the whole series of halo-substituted analogs. Beside the cytotoxic potential of studied compounds also the effect of two selected complexes (9 and 10) on apoptosis induction in MG-63 and A549 cells was also studied via externalization of phosphatidylserine at the outer plasma membrane leaflet. Both selected complexes that gave best preliminary cytotoxicity results contain bromo substituted **hq** ligands. Apoptosis induction results are in agreement with the cell viability assays suggesting the higher and more selective anticancer activity of complex **10** in comparison to complex **9** on MG-63 cells.

¹ Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia, iztok.turel@fkkt.uni-lj.si

² Chair of Pathologic Biochemistry, Exact School Sciences, National University of La Plata, 47 y 115, 1900 La Plata, Argentina. E-mail: etcheverry@biol.unlp.edu.ar

³ Inorganic Chemistry Center (CEQUINOR, CONICET), Exact School Sciences, National University of La Plata, 47 y 115, 1900 La Plata, Argentina

⁴ State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing, 210017, People's Republic of China

Download English Version:

https://daneshyari.com/en/article/7753693

Download Persian Version:

https://daneshyari.com/article/7753693

Daneshyari.com