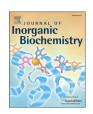
IIB-10020; No of Pages 8


ARTICLE IN PRESS

Journal of Inorganic Biochemistry xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Journal of Inorganic Biochemistry

journal homepage: www.elsevier.com/locate/jinorgbio

Platinum(II) carboxylato complexes containing 7-azaindoles as *N*-donor carrier ligands showed cytotoxicity against cancer cell lines

Pavel Štarha, Zdeněk Trávníček *, Lucia Pazderová, Zdeněk Dvořák

Regional Centre of Advanced Technologies, Division of Biologically Active Complexes and Molecular Magnets, Faculty of Science, Palacký University, 17. listopadu 12, CZ771 46 Olomouc, Czech Republic

ARTICLE INFO

Article history: Received 3 March 2016 Received in revised form 8 June 2016 Accepted 14 June 2016 Available online xxxx

Keywords: Platinum(II) complexes 7-Azaindole derivatives Antiumour activity Malonato Decanoato Cell cycle

ABSTRACT

The platinum(II) malonato (Mal) and decanoato (Dec) complexes of the general formulas [Pt(Mal)(naza)₂] (**1-3**) and *cis*-[Pt(Dec)₂(naza)₂] (**4-7**) were prepared, characterized and tested for their *in vitro* cytotoxicity against *cisplatin*-sensitive (A2780) and *cisplatin*-resistant (A2780R) human ovarian carcinoma cell lines and non-cancerous human lung fibroblasts (MRC-5); naza = halogeno-derivatives of 7-azaindole. Complexes **1-7** effectively overcome the acquired resistance of ovarian carcinoma cells to *cisplatin*. Complexes **2** (IC₅₀ = 26.6 \pm 8.9 μ M against A2780 and 28.9 \pm 6.7 μ M against A2780R), **4** (IC₅₀ = 14.5 \pm 0.6 μ M against A2780 and 14.5 \pm 3.8 μ M against A2780R) and 5 (IC₅₀ = 13.0 \pm 1.1 μ M against A2780 and 13.6 \pm 4.9 μ M against A2780R) indicated decreased toxicity against healthy MRC-5 cells (IC₅₀ > 50.0 μ M for **2** and >25.0 μ M for **4** and **5**). The representative complexes **2** and **4** showed mutually different effect on the A2780 cell cycle at IC₅₀ concentrations after 24 h exposure. Concretely, the complex **2** caused cell cycle arrest at G₀/G₁ phase, while **4** induced cell death by apoptosis with high population of cells in sub-G₁ cell cycle phase. The hydrolysis and interactions of the selected complexes with biomolecules (glutathione (GSH) and guanosine monophosphate (GMP)) were also studied by means of ¹H NMR and ESI+ mass spectra.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Most of the platinum complexes, which entered the clinical trials as the perspective anticancer chemotherapy substances, involved one bidentate or two monodentate *O*-donor carboxylates in their structures [1]. This can be explained by several advantages of platinum carboxylato complexes (*e.g.* higher hydrolytic stability under physiological conditions and higher accumulation to the target cancer cells) over their dichlorido analogues. As an example regarding decanoato complexes, the following compound could be mentioned: 1*R*,2*R*-diaminocyclohexane-bis(neodecanoato)platinum(II), that is involved as the active species in the liposomal drug candidate *aroplatin*, showed higher *in vitro* and *in vivo* activity as compared with *cisplatin* against both the *cisplatin*-sensitive and -resistant human cancer cell lines [2, 3]. This formulation was not cross-resistant with *cisplatin*, its application

Abbreviations: 3Braza, 3-bromo-7-azaindole; 3Iaza, 3-iodo-7-azaindole; 4Braza, 4-bromo-7-azaindole; 4Claza, 4-chloro-7-azaindole; A2780, human ovarian carcinoma cell line; A2780R, human *cisplatin*-resistant ovarian carcinoma cell line; Dec, decanoato; GSH, reduced glutathione; Mal, malonato; MRC-5, non-cancerous human lung fibroblasts; naza, general abbreviation for the used 7-azaindole derivatives; SD, standard deviation; SI, selectivity index.

* Corresponding author.

E-mail address: zdenek.travnicek@upol.cz (Z. Trávníček).

was not connected with nephrotoxicity and it effectively treated the metastatic tumours. Nevertheless, *aroplatin* was not approved for the clinical use in oncology practise, mainly due to economic reasons. Besides the mentioned neodecanoato complexes, the formulations with the platinum complexes involving different long-chain aliphatic monodentate carboxylates (*e.g.* decanoate as in the case of the presented work), were reported in the literature to date [4–6]. Among them, the nanosystem involving the decanoatoplatinum complex deal with the nanoparticles carrying the mentioned platinum prodrug together with REV1/REV3L-specific siRNAs, whose combinative biological effect enhances the cell response [6].

As for the malonato complexes, *heptaplatin*, (4*R*,5*R*)-4,5-bis(aminomethyl)-2-isopropyl-1.3-dioxolan-malonatoplatinum(II) [7], showed several advantages over *cisplatin* during the *in vitro*, *in vivo* and clinical testing — for example high stability in solution, circumventing the resistance of various tumour types to *cisplatin*, or less severe platinum therapy drawbacks (nephrotoxicity, proteinuria, neutropenia, emesis) [7,8]. It was approved for the gastric cancer chemotherapy in the Republic of Korea [9]. The biological importance of the malonato leaving group of platinum complexes was demonstrated on numerous compounds showing comparable or even higher *in vitro* anticancer activity than *cisplatin*. The first of them was the simple [Pt(NH₃)₂(Mal)] complex reported as *in vivo* effective against Sarcoma

http://dx.doi.org/10.1016/j.jinorgbio.2016.06.018 0162-0134/© 2016 Elsevier Inc. All rights reserved.

Please cite this article as: P. Štarha, et al., Platinum(II) carboxylato complexes containing 7-azaindoles as *N*-donor carrier ligands showed cytotoxicity against cancer cell lines..., J. Inorg. Biochem. (2016), http://dx.doi.org/10.1016/j.jinorgbio.2016.06.018

180 on mice in the fundamental work of Cleare and Hoeschele [10], later shown as in vitro cytotoxic against A2780 human ovarian carcinoma cells [11], which has been followed by complexes containing various aliphatic (e.g. 2-hydroxy-1,3-propanediamine) or heterocyclic (e.g. 1,2,4triazolo[1,5-a]pyrimidine derivatives) N-donor ligands. For example, the complex with the 2-hydroxy-1,3-propanediamine carrier ligand showed higher in vitro cytotoxicity against lung (A549, A549/ATCC), gastric (SGC-7901) and prostrate (LNCaP) human cancer cell lines as compared with carboplatin [12]. Lorenzo et al. [13] reported the complexes with variously substituted 1,2-bis(aminomethyl)carbobicyclic ligands and concluded the malonato complexes as the most in vitro biologically effective ones against human leukaemia (HL-60) cancer cell line. Another example reported by Varbanov et al. [14] showed higher in vivo activity on mice with both leukaemia (L1210; 75% of mice were cured in the group treated with 30 mg/kg dose) and colon carcinoma (CT-26; final tumour weigh of 0.12 g was markedly lower as compared with 0.27 g for the control group and 0.18 g for the group treated by oxaliplatin) as compared with oxaliplatin, while being less toxic to the tested animals. Lakomska et al. [15] prepared a series of three malonatoplatinum(II) complexes containing 1,2,4triazolo[1,5-a]pyrimidine derivatives as N-donor carrier ligands, with the most effective representative exceeding in vitro cytotoxicity of cisplatin against lung A549, breast T47D and 4T1, melanoma B16, bladder HCV-39T, leukaemia HL-60 and colorectal HT-29 cell lines. Moreover, a series of dichlorido, oxalato, malonato and cyclobutane-1,1'dicarboxylato complexes containing (1R,2R)-N1,N2-dibutyl-1,2diaminocyclohexane was tested against human hepatocellular carcinoma (HepG-2), gastric carcinoma (SGC-7901), non-small-cell lung cancer (A549) and colorectal cancer (HCT-116) cell lines, showing negligible cytotoxicity, except for those with the cyclobutane-1,1'dicarboxylato ligand [16]. Other malonatoplatinum complexes, whose in vitro cytotoxicity against A2780 cells was tested [17-20], are discussed below within the text.

From the mechanistic point of view, anticancer platinum(II) carboxylato complexes, such as clinically-used *carboplatin* or *oxaliplatin*, hydrolyse under physiological conditions and covalently interact with intracellular biomolecules, preferentially DNA nucleobases and sulphur-containing biomolecules [21,22]. In other words, mechanism of action of clinically used platinum carboxylato complexes is based on the formation of adduct with nuclear DNA, thus it is similar to *cisplatin*. Similarly, hydrolytic activation and formation of covalent DNA adducts of malonato and decanoato platinum(II) complexes have been reported in the literature in connection with their possible mechanism of action [23,24].

We report a series of platinum(II) complexes containing the halogeno derivatives of 7-azaindole and differing in the type of *O*-donor carboxylate, concretely malonate (1–3) and decanoate (4–7). As in the case of the recently reported platinum(II) dichlorido [25–29], oxalato [25,26,30] and cyclobutane-1,1-dicarboxylato (Cbdc) [31] complexes containing the mentioned type of the *N*-donor carrier ligands, we studied *in vitro* cytotoxicity against the A2780 cells and the A2780R *cisplatin*-resistant human ovarian carcinoma cells and interactions with relevant biomolecules glutathione (GSH) and guanosine monophosphate (GMP). In order to extend the research of the platinum complexes containing 7-azaindoles, we focused on the studies of hydrophobicity (log*P*) and especially on the evaluation of toxicity of the studied complexes against non-cancerous MRC-5 human lung fibroblast cell line. Finally, we studied an impact of the selected representatives on cell cycle of A2780 and analysed the differences over clinically used platinum-based anticancer drug *cisplatin*.

2. Experimental

2.1. Materials

The chemicals $K_2[PtCl_4]$, KI, 3-bromo-7-azaindole (3Braza), 3-iodo-7-azaindole (3Iaza), 4-chloro-7-azaindole (4Claza) and 4-bromo-7-azaindole (4Braza), malonic acid (H_2Mal), sodium

decanoate (NaDec), NaOH, AgNO₃, reduced glutathione (GSH), guanosine 5'-monophosphate disodium salt hydrate (GMP), *cisplatin* and solvents (*N*,*N*'-dimethylformamide (DMF), chloroform, acetone, methanol, diethyl ether, *n*-octanol, DMF-*d*₇, D₂O) were purchased from Sigma-Aldrich (Prague, Czech Republic) and Acros Organics (Pardubice, Czech Republic).

2.2. Methods

¹H, ¹³C and ¹⁹⁵Pt NMR spectra and ¹H—¹H gs-COSY, ¹H—¹³C gs-HMQC and ¹H—¹³C gs-HMBC two dimensional correlation experiments (gs = gradient selected, COSY = correlation spectroscopy, HMQC = heteronuclear multiple quantum coherence, HMBC = heteronuclear multiple bond coherence) of the DMF- d_7 solutions were measured at 300 K on a Varian 400 device at 400.00 MHz (¹H), 100.58 MHz (¹³C) and 86.00 MHz (195Pt). 1H and 13C spectra were calibrated against the residual DMF- d_6 ¹H NMR (8.03, 2.92 and 2.75 ppm) and ¹³C NMR (163.15, 34.89 and 29.76 ppm) signals. ¹⁹⁵Pt spectra were adjusted against K₂[PtCl₆] in D₂O found at 0 ppm. ¹H—¹⁵ N gs-HMBC two dimensional correlation experiments were carried out at natural abundance and calibrated against the residual signals of the solvent (8.03 ppm for ¹H and 104.7 ppm for ¹⁵ N) only for the representative complexes **3** and **5**. The splitting of proton resonances in the reported ¹H spectra is defined as s = singlet, d = doublet, t = triplet, br = broad band, and m = multiplet. Electrospray ionization (ESI) mass spectra (in both the positive (ESI+) and negative (ESI-) ionization modes) were acquired on the methanol solutions of the studied complexes using LCQ Fleet Ion Trap mass spectrometer (Thermo Scientific; QualBrowser software, version 2.0.7). A combustion analysis (C, H, N) was carried out by Flash 2000 CHNS Elemental Analyzer (Thermo Scientific). Infrared spectra (400–4000 cm⁻¹ region) were acquired using the ATR technique on a Nexus 670 FT-IR (Thermo Nicolet).

2.3. Synthesis

Stoichiometric amount of AgNO $_3$ was added into the solution of Na $_2$ Mal (prepared *in situ* from malonic acid dissolved in a minimum volume of distilled water and neutralized by 1 M NaOH) or NaDec. The mixtures were stirred in the dark at room temperature for 10 min. The products (Ag $_2$ Mal and AgDec) were collected, washed by distilled water (2 × 5 mL), methanol (2 × 5 mL) and diethyl ether (2 × 5 mL), dried under a vacuum and stored in the fridge.

 $K_2[PtCl_4]$ (0.5 mmol) was dissolved in a minimum volume of water and five molar equivalents of KI were poured in. The reaction mixture was stirred at room temperature for 90 min to get the solution of $K_2[PtI_4]$, to which the methanolic solution of the appropriate 7-azaindole derivative (1.0 mmol; 3Braza for 1 and 4, 3Iaza for 2 and 5, 4Braza for 3 and 7, and 4CIaza for 6) was added. The resulting reaction mixture was stirred at the ambient temperature overnight. The yellow solid of cis- $[PtI_2(naza)_2]$ was collected by filtration and washed with distilled water (2 × 5 mL), methanol (2 × 2 mL) and diethyl ether (2 × 5 mL), and dried under a vacuum; naza = halogeno-derivatives of 7-azaindole.

A mixture of cis-[PtI₂(naza)₂] (0.2 mmol) with Ag₂Mal (0.2 mmol) or AgDec (0.4 mmol) was stirred at the ambient temperature in a minimum volume of chloroform in the dark for 48 h (under aluminium foil). The precipitate (AgI) was filtered off and washed with chloroform (2 × 5 mL). The combined chloroform solutions were evaporated to dryness. The obtained products of [Pt(Mal)(naza)₂] (1–3) or cis-[Pt(Dec)₂(naza)₂] (4–7) (Fig. 1) were suspended in diethyl ether, collected by filtration and dried under vacuum. For the results of elemental analysis (C, H, N), 1 H, 13 C and 15 N NMR spectroscopy, ESI mass spectrometry and IR spectroscopy, see Supporting Information.

Download English Version:

https://daneshyari.com/en/article/7754573

Download Persian Version:

https://daneshyari.com/article/7754573

<u>Daneshyari.com</u>