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In this work, a novel approach to fatigue life prediction under step-stress conditions is introduced, where
the cumulative distribution function for the failure of components was implemented by means of a neu-
ral network. The model was fit to experimental data on the fatigue life of steel under step-stress condi-
tions. For comparison, a standard approach based on the lognormal distribution function was also
implemented and fit to the same experimental data. Both models were optimized by evolutionary com-
putation, using a maximum likelihood estimator. The Kolmogorov-Smirnov test was applied to compare
the results of the new approach to those obtained with the lognormal distribution function.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

To predict failure by mechanical fatigue, the response of mate-
rials to the several loads expected to occur during the lifetime of
components must be considered. As fatigue properties cannot be
deduced from static mechanical properties only, they must be di-
rectly measured by specifically designed mechanical experiments,
where a constant alternate stress S is cyclically applied to the
material until failure. These experiments allow the construction
of the well-known S-N curves, which express the lifetime of the
material as measured by the logarithm of the number of cycles
N, plotted against the logarithm of S. However, in the majority of
the situations, mechanical components are submitted to more than
one level of stress during their lifetime. Such load variations make
it inadequate to use a single S-N curve for fatigue life prediction,
since these curves are built under constant stress conditions.
Cumulative damage models [1], such as the cumulative exposure
model [2-4], are commonly used in this situation.

To complicate matters, random factors lead to great variability
in the results of fatigue tests, and a probabilistic approach is neces-
sary to account for the uncertainties present in the lifetime of
structures [1,5,6]. Usually, these probabilistic approaches are built
over standard statistical distributions. However, there are many
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real-world situations where significant deviations from these dis-
tributions may occur. In this context, a novel approach is proposed
where a statistical distribution is built by means of an artificial
neural network.

Artificial neural networks, or neural networks (NNs) for short,
are a class of computational tools inspired by the biological ner-
vous system [7]. They consist of partially or fully interconnected
simple processing units called neurons. The neuron is a nonlinear
unit that receives input signals from other units or from the envi-
ronment (the space of input data relevant to the problem at hand),
yielding an output. The signals received by a neuron are modulated
by real numbers called synaptic weights (or simply weights). By
adjusting the weights through a training process, NNs can learn
underlying relations from a given set of representative examples
to solve a particular problem instead of following a predefined
set of rules. In feedforward networks, the neurons are usually ar-
ranged in layers: input and output layers, which interact with
the environment, and one or more layers of hidden neurons, which
do not have contact with the environment. There is a definite order
of evaluation of the neurons, the network receives the input sig-
nals, propagates them through all the layers, and returns signals
to the environment through the output neurons (see Fig. 1). Feed-
forward networks with a single hidden layer and a continuous non-
linear activation function are universal approximators, in that any
continuous function can be approximated to any degree of accu-
racy if a sufficient number of hidden neurons is provided [8].
Neural networks have been successfully applied to a number of
problems in many fields of science and engineering [9].

Neural networks have also been used for fatigue life prediction.
The most direct approach has been to use material properties and


http://dx.doi.org/10.1016/j.ijfatigue.2010.09.003
mailto:jbhpoa@yahoo.com.br
mailto:pujol@cdtn.br
mailto:jmap@fumec.br
http://www.cdtn.br
http://www.fumec.br
http://dx.doi.org/10.1016/j.ijfatigue.2010.09.003
http://www.sciencedirect.com/science/journal/01421123
http://www.elsevier.com/locate/ijfatigue

314 J.C. Figueira Pujol, .M. Andrade Pinto/International Journal of Fatigue 33 (2011) 313-322

Activation
function

Output

g[i(w,x,)+b} ¥,

Fig. 1. The neuron is a nonlinear unit that receives input signals from neurons in
the previous layer or from the environment, and transfers output signals to neurons
in the next layer or back to the environment.

experimental conditions as input data to a neural network, whose
output is the number of cycles until failure. For example, Mathur
et al. [10] demonstrated the ability of neural networks to predict
fatigue life. In this case, the input to the neural net include: volume
fraction, tensile modulus, tensile strength, applied load parame-
ters, probability of failure, statistical parameters of fatigue life,
etc. The output is the logarithm of the number of fatigue life cycles.
Troudt and Merril [11] implemented a feedforward neural network
for diagnosis and prognosis purposes. The neural network is sup-
posed to evaluate degradation on components under mechanical
stress in real time to predict when they will eventually fail. Alter-
natively, the neural network can be combined with other models to
estimate fatigue life. For example, Artymiak et. al [12] trained four
multilayered feedforward neural neural networks to build S-N
curves. Vassilopoulos et al. [13] proposed to predict fatigue life
by using a feedforward neural network to build constant life dia-
grams. Kang et al. [14] combined a feedforward neural network
with the critical plane method to predict fatigue life. Another strat-
egy has been to use neural networks to estimate the fatigue crack
growth rate [15-17]. Neural networks have also been applied to
address the stochastic aspects of the fatigue phenomenon. For
example, Janezic et al. [18] implemented a feedforward neural net-
work to estimate the parameters of the Weibull distribution. Sim-
ilarly, Bucar et al. [19] designed a probability density function
using a weighted sum of Weibull density functions modulated by
real-valued coefficients, whose values are determined by a feedfor-
ward neural network. The list of such applications is endless (see
[20-22] for additional material on the subject).

The next logical step would be to replace the standard statistical
distributions with a probability distribution built from scratch.
That is the proposal of the present work, to use a feedforward neu-
ral network to compute the probability that a component submit-
ted to a specified level of stress fails until a specified number of
cycles. The numerical model was tested on fatigue data collected
from step-stress experiments carried out on steel specimens. The
new paradigm was compared to a standard statistical approach
based on the lognormal distribution.

This work is organized as follows: in Section 2 the experimental
setup is described, Section 3 describes the step-stress model, in
Section 4 the maximum likelihood is discussed, in Section 5 the
optimization procedure is introduced, in Section 6 the approach
using a standard statistical distribution function is described, in
Section 7 the approach based on the neural network is presented
and, in Sections 8 and 9, results comparing both methods are re-
ported and discussed. Finally, Section 10 concludes and provides
suggestions for further research.

2. Description of the fatigue experiments

Flex-rotational fatigue tests were carried out on SAE 8620 steel
specimens [23] (chemical composition and mechanical properties
of the material are shown in Tables 1 and 2, respectively). The test

Table 1
Chemical composition of the SAE 8620 steel [45].
Element % Min. % Max.
C 0.18 0.23
Si 0.15 0.30
Mn 0.70 0.90
Cr 0.40 0.60
Ni 0.40 0.70
Mo 0.15 0.25
P <0.03
S <0.04
Co <0.1
Pb 0 0.15
Cu <03
Al <0.1
U <0.1
W 0 0.1
Table 2

Mechanical properties of the SAE 8620 steel with 95%
confidence level [45].

Property Value
Yield strength - ¢, (MPa) 370+ 10
Tensile strength (MPa) 602 + 24
Elongation (%) 21+2

Reduction of area (%) 39+1
Breaking strength (MPa) 432+19
Endurance limit (MPa) 194+5

specimens were designed and manufactured according to sugges-
tions by Cazaud [24] and the ASTM standards [25], to produce
specimens whose geometry and smoothness do not interfere with
the test results (see Fig. 2). Moreover, the experiments were carried
out under refrigeration provided by natural water. Each specimen
was submitted to three levels of stress, viz.: S;, S, and S3. S; was
set to 258 MPa during 35,000 cycles and S, = 238 MPa was applied
for 65,000 cycles. S3 was set to 20 values selected at regular inter-
vals of 10 MPa to cover a broad load range below the yield strength
of the material (see Table 2). S3 was applied until failure or until
the machine reached 5 x 10° cycles, a condition that qualifies as
a type I censoring mechanism [26].

The test suite was planned according to the S-N-P curves of the
material (see Fig. 3). In preliminary experiments (not reported in
the paper), five specimens were submitted to a step-stress condi-
tion with S; set to 258 MPa for 50,000 cycles, and S, set to
238 MPa for 100,000 cycles. A third level of stress was then applied
to each of the five specimens by setting S; to 218 MPa, 198 MPa,
178 MPa, 158 MPa and 148 MPa. The specimens submitted to
S3=158 MPa and 158 MPa failed around 1.0 x 10° cycles. Even
with the great dispersion expected in fatigue test results, such load
configuration would probably not allow censoring (an undesirable
simplification of the model). Therefore, the number of cycles for
the application of the first and the second levels of stress were re-
duced to 35,000 cycles and 65,000 cycles, respectively.
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Fig. 2. Geometry of the specimens used in the fatigue tests [45].
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