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a b s t r a c t

Several finite elastic strain measures are evaluated for use in constitutive models of crys-
talline elasticity and elasto-plasticity. These include the Green material strain tensor, the
Eulerian material strain tensor, and the logarithmic material strain tensor, all of which
are referred to locally relaxed coordinates invariant under spatial rotations. New appli-
cations of logarithmic strain-based theory towards shock compression of aluminum, cop-
per, and magnesium single crystals and polycrystals are presented. Solutions to the planar
shock problem from previous work are summarized and compared with the present re-
sults. Consideration of these new results in conjunction with previous analysis for a num-
ber of differentmetals, ceramics, andminerals suggests that Eulerian strain-based theory is
most accurate formodeling the dynamic high-pressure response of ductilemetallic crystals
wherein ratios of elastic shear to bulk moduli tend to be relatively small, while logarithmic
strain-based theory is recommended for modeling shocks in ceramics and minerals with
larger ratios of effective elastic shear to bulk modulus.

Published by Elsevier Ltd.

1. Introduction

The shock response of solids is important in applica-
tions related to structural crashworthiness, defense (e.g.,
projectile–target interactions), and geophysics (e.g., ex-
plosive mining operations and hypervelocity collisions
of planetary rock masses) [1]. Accurate, efficient, stable,
and thermodynamically consistent models for nonlinear
anisotropic elasticity are required for proper mesoscale
modeling of crystalline solids subjected to impact or ballis-
tic loading. Nonlinear hyperelasticity addresses the ther-
modynamically reversible response component of solids
subjected to large deformation; classes of crystalline ma-
terials of interest include metals [2], ceramics and miner-
als [3], energeticmaterials [4], and electronicmaterials [5].
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This Letter considers three particular nonlinear thermoe-
lasticitymodels–each based on a different finite strain ten-
sor referred to locally unstressedmaterial coordinates–and
their performance regarding depiction of shock compres-
sion of crystalline solids. The three strain measures are the
elastic Green–Lagrange strain E (often simply referred to
here as Green strain), Eulerian material strain D, and loga-
rithmic material strain e, all defined mathematically later
in the text.

Conventional Lagrangian formulations of nonlinear
elasticity for crystals [6,7] incorporate the elastic Green
strain tensor. However, benefits of Eulerian strain ten-
sors for isotropic materials were predicted [8] and demon-
strated for cubic crystals under hydrostatic stress [9].
Thermal effects were considered in [10] for cubic crystals,
and a theory for non-cubic crystals was initiated in [11].
A complete D-based continuum thermoelastic theory for
large deformation of crystals of arbitrary symmetry was
developed in [12]. Analytical solutions for homogeneous
deformations of ideal cubic crystals were studied over a
prescribed range of elastic coefficients; stress states and
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intrinsic stability measures were compared. For realistic
coefficients, Eulerian theory predicted more physically re-
alistic and stable behavior than Lagrangian theory under
large compression and shear. Analytical solutions for shock
compression of anisotropic single crystals were derived for
internal energy functions quartic in Lagrangian or Eulerian
strain and linear in entropy; results were analyzed for non-
metals quartz, sapphire, and diamond in [12] and metals
aluminum, copper, andmagnesium in [13]. Eulerian theory
was recently used to numericallymodel the viscoplastic re-
sponse of aluminum single crystals and textured polycrys-
tals in wave propagation simulated using the finite differ-
ence method [14], wherein Lagrangian theory was found
insufficient for modeling strong/overdriven elastic–plastic
shocks.

A complete e-based continuum thermoelastic theory
was analogously developed in [15] and applied to study
the shock response of the same three nonmetals. The the-
ory was extended to describe elastic–plastic response us-
ing amultiplicative decomposition of the deformation gra-
dient (formally given later in Eq. (2)), and solutions for
plastic shocks (involving slip, twinning, and/or shear frac-
tures) following an elastic precursor in rate independent
solids were derived [15]. Logarithmic theory delivered su-
perior accuracy to Lagrangian and Eulerian theories for
modeling shocks in single crystals of sapphire (X- and Z-
cut), quartz (Z-cut), and diamond (X-cut) [15]. Logarith-
mic theory incorporating third-order elastic constants was
also applied to analytically model the elastic–inelastic re-
sponse of isotropic polycrystalline titanium diboride ce-
ramic [16], including double yield and effects of static lat-
eral pre-stress.

The remainder of this Letter is organized as follows.
Kinematics and strain tensors are formally defined in Sec-
tion 2, along with three-dimensional forms of internal
energy functions. Specialization of the general theory to
shock loading and large volumetric deformation is re-
viewed in Section 3. Analytical solutions corresponding
to energy potentials associated with different strain ten-
sors are compared with each other, experimental data,
and atomic simulation data in Section 4, leading to sug-
gested/preferred potentials for use in various situations.
Conclusions follow in Section 5. Notation of continuum
mechanics is used: vectors and tensors in bold font, scalars
in italics, and summation over repeated indices (sub-
scripts) referred to Cartesian coordinates. As befitting the
brief style of a Letter, derivations that can be found in the
cited references are usually omitted.

2. General constitutive theory

At a material element with reference coordinates X
and spatial coordinates x, the deformation gradient F and
volume ratio J are

F(X) = ∂x/∂X,

FiJ(XK ) = ∂xi/∂XJ = δiJ + ∂ui/∂XJ;

J(X) = V/V0 = det F ;

(1)

where u is the particle displacement. For an elastic–plastic
material, where ‘‘plastic’’ refers here to any thermodynam-
ically irreversible mechanism such as dislocation glide, de-
formation twinning, fracture, void growth, or pore col-
lapse, the total deformation gradient is typically split into a
product of a thermoelastic term (superscript E) and a plas-
tic term (superscript P , and which can be further decom-
posed into a product of deformation mappings associated
with different physical mechanisms) [2–4,6,17]:

F = F EF P , FiJ = F E
iK F

P
KJ;

J = JE JP = det F E det F P .
(2)

The elastic Green material strain tensor (i.e., Green–
Lagrange strain) is defined as [6,7]

E =
1
2
(F ETF E

− 1), EIJ =
1
2
(F E

kIF
E
kJ − δIJ). (3)

Also considered here are theories incorporating the
elastic Eulerian material strain tensor [12–14]

D =
1
2
(1 − F E−1F E−T ), DIJ =

1
2
(δIJ − F E−1

Ik F E−1
Jk ) (4)

and the elastic material logarithmic strain tensor [15,16]

e = lnU E
=

1
2
ln(F ETF E) =

1
2
ln CE,

eIJ =
1
2
ln(F ETF E)IJ .

(5)

Complete presentations of thermodynamic theories can
be found in [12–16] and are too lengthy to reproduce in
entirety in this Letter. Several important relations are listed
next for reference. Local balance laws are, in the absence of
discontinuities, body forces, and heat conduction,

ρ0 = ρJ, ∇ · σ = ρẍ, U̇ = Jσ : (Ḟ F−1), (6)

with ρ0 and ρ reference and spatial mass densities, σ sym-
metric Cauchy stress, and U internal energy per reference
volume. Letting ξ denote an internal state variable linked
to evolution of microstructure (e.g., defects) and η the en-
tropy density, forms of internal energy functions are

U = Ū(E, η, ξ), U = Û(D, η, ξ),

U =
⌣
U (e, η, ξ).

(7)

Corresponding thermoelastic relationships for stress σ
and temperature θ follow as [12,15]

σ = JE−1F E(∂Ū/∂E)F ET ,

σ = JE−1F E−T (∂Û/∂D)F E−1,

σ = JE−1F E
[(∂

⌣
U/∂e) : (∂ ln CE/∂CE)]F ET

;

(8)

θ = ∂Ū/∂η, θ = ∂Û/∂η, θ = ∂
⌣
U/∂η. (9)

At fixed entropy and internal state variables, assuming
a stress-free reference configuration, andwritten explicitly
with elastic constants up to fourth order, internal energy
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