ARTICLE IN PRESS

Journal of Organometallic Chemistry xxx (2015) 1-8

Contents lists available at ScienceDirect

ELSEVIER

journal homepage: www.elsevier.com/locate/jorganchem

Iridium-bismuth carbonyl cluster complexes

Richard D. Adams^{*}, Gaya Elpitiya

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA

ARTICLE INFO

Article history: Received 19 June 2015 Received in revised form 31 July 2015 Accepted 2 August 2015 Available online xxx Dedicated to the memory of Professor Jack Lewis, the Lord Lewis of Newnham, a pioneer in the chemistry of polynuclear metal carbonyl cluster complexes.

Keywords: Iridium Bismuth Ruthenium Cluster Structure Condensation

ABSTRACT

The compound $Ir_3(CO)_9(\mu_3-Bi)$, **1** loses CO when heated and condenses to form the hexairidium compoun $Ir_6(CO)_{13}(\mu_3-Bi)(\mu_4-Bi)$, **2**. Compounds **1** and **2** react with PPh₃ to form the PPh₃ derivatives $Ir_3(CO)_9$. $_n(PPh_3)_n(\mu_3-Bi)$, **3** – **5**, n = 1-3 and $Ir_6(CO)_{12}(PPh_3)(\mu_3-Bi)(\mu_4-Bi)$, **6**, respectively. Compound **4** loses CO and converts to the o-metallated product $Ir_3(CO)_6(PPh_3)(\mu_2-GH_4PPh_2)(\mu-H)(\mu_3-Bi)$, **7**. Compound **1** reacts with Ru3(CO)10(NCMe)2 to yield the bimetallic cluster complex $Ir_3Ru_4(CO)_{18}(\mu_3-Bi)$, **9**. The structures of all new products were established by single-crystal X-ray diffraction analyses. The hexairidium products **2** and **6** contain square pyramidal Ir5 clusters with a quadruply bridging bismuth ligand across the square base and a triply bridging bismuth ligand on one of the Ir₃ triangles. The sixth Ir grouping is a capping group on one of the remaining Ir₃ triangles. Compound **9** contains an octahedral Ir_3Ru_3 cluster with a $Ru(CO)_3$ group capping an Ir3 triangle and a triply bridging bismuth ligand on one of the Ir₁ triangles. With a respectively Ir₃ cluster with a $Ru(CO)_3$ group capping an Ir3 triangle and a triply bridging bismuth ligand on one of the Ir₁ triangles. N. All rights reserved.

1. Introduction

Interest in transition metal – bismuth compounds stems from ability of these materials to serve as catalysts for the selective oxidation and ammoxidation of hydrocarbons [1]. In recent studies we have synthesized new ReBi carbonyl cluster compounds that have been found to be precursors to effective catalysts for the ammoxidation of 3-picoline to nicotinonitrile Eq. (1) [2].

There are very few examples of iridium-bismuth carbonyl cluster complexes [3–5]. We have previously shown that the compound $Ir_3(CO)_9(\mu_3-Bi)$, **1** [3] can be converted into the higher nuclearity complex $Ir_5(CO)_{10}(\mu_3-Bi)_2(\mu_4-Bi)$ by reaction with BiPh₃, Eq. (2) [4], and have shown that **1** and $Ir_5(CO)_{10}(\mu_3-Bi)_2(\mu_4-Bi)$ are

* Corresponding author. E-mail address: Adamsrd@mailbox.sc.edu (R.D. Adams).

http://dx.doi.org/10.1016/j.jorganchem.2015.08.001 0022-328X/© 2015 Elsevier B.V. All rights reserved. precursors to effective catalysts for the direct oxidation of 3picoline to nicotinic acid, also known as Niacin, by using the oxidant acetylperoxyborate, Eq. (3) [4].

We have also prepared a number of iridium-bismuth complexes containing germanium and tin ligands from complex **1** by reactions

ARTICLE IN PRESS

R.D. Adams, G. Elpitiya / Journal of Organometallic Chemistry xxx (2015) 1-8

with HGePh₃ and HSnPh₃, Eq. (4) [5].

In the continuation of our studies of the chemistry of iridiumbismuth carbonyl cluster complexes, we have now investigated the self-condensation of **1** and its reactions with PPh₃ and with $Ru_3(CO)_{10}(NCMe)_2$. The results of these studies are reported herein.

2. Experimental section

2.1. General data

Reagent grade solvents were dried by the standard procedures and were freshly distilled prior to use. Infrared spectra were recorded on a Thermo Nicolet Avatar 360 FT-IR spectrophotometer. Room temperature ¹H NMR spectra were recorded on a Varian Mercury 300 spectrometer operating at 300.1 MHz ³¹P{¹H} NMR were recorded on a Bruker Avance/DRX 400 NMR spectrometer operating at 162.0 MHz. Mass spectrometric (MS) measurements performed by a direct-exposure probe using either electron impact ionization (EI) or electrospray ionization (ES) using a Micromass Q-TOF instrument. Ir₄(CO)₁₂, Ru₃(CO)₁₂ and PPh₃ were obtained from STREM and Sigma-Aldrich, respectively and were used without further purification. [PPN]Ir(CO)₄ [6] and Ru₃(CO)₁₀(NCMe)₂ [7] were prepared according to the previously reported procedures. $Ir_3(CO)_9(\mu_3-Bi)$, **1** [3] was prepared by a modified procedure reported previously [4]. All product separations were performed by TLC in air on Analtech 0.25 mm silica gel 60 Å F254 and 0.25 mm aluminum oxide 60 Å F254 glass plates.

2.1.1. Synthesis of $Ir_6(CO)_{13}(\mu_3-Bi)$ (μ_4-Bi), **2**

A 13.2 mg (0.013 mmol) portion of **1** were dissolved in 15 mL of hexane. The reaction was heated to reflux for 18 h. The solvent was then removed *in vacuo*, and the product was isolated by TLC with a 4/1 hexane/methylene chloride solvent ratio as the eluent. This gave 10.3 mg (0.0050 mmol) of dark green $Ir_6(CO)_{13}(\mu_3-Bi)(\mu_4-Bi)$, **2** (84% yield). Spectral data for **2**: IR v_{CO} (cm⁻¹ in CH₂Cl₂) 2095(w), 2067(w), 2042 (vs), 2021 (w), 2007 (w), 1992 (w). ES (negative)/MS for **2**: m/z = 2015 (M + Br⁻). The isotope distribution pattern is consistent with the presence of six iridium atoms and two bismuth atoms.

2.1.2. Synthesis of Ir₃(CO)₈(PPh₃) (μ₃-Bi), **3**

24.00 mg (0.023 mmol) of **1** was dissolved in 10 mL of CH₂Cl₂. 6.00 mg (0.023 mmol) of PPh₃ was added and the reaction mixture was heated to reflux for 15.5 h. The solvent was then removed *in vacuo*, and the product was isolated by TLC with a 6/1 hexane/ methylene chloride solvent ratio as the eluent. This gave 16.50 mg of the product yellow Ir₃(CO)₈(PPh₃)(µ₃-Bi), **3** (56% yield). Spectral data for **3**: IR ν_{CO} (cm⁻¹ in CH₂Cl₂) 2073(m), 2041 (vs), 2018 (s), 2007 (m); ³¹P {¹H} NMR (CDCl₃) δ = -8.54 ppm (s, 1 PPh₃) Mass Spec. ES (positive)/MS for **3**: *m*/*z* = 1272 (M⁺⁺). The isotope distribution pattern is consistent with the presence of three iridium atoms and one bismuth atom.

2.1.3. Synthesis of Ir₃(CO)₇(PPh₃)₂(µ₃-Bi), 4

A 13.0 mg (0.050 mmol) portion of PPh₃ was added to 25.0 mg (0.024 mmol) of **1** that was dissolved in 15 mL of methylene chloride. The reaction was heated to reflux for 3.5 h. The solvent was then removed *in vacuo*, and the product was isolated by TLC with a 6/1 hexane/methylene chloride solvent ratio as the eluent. This gave 30.0 mg (0.02 mmol) of orange Ir₃(CO)₇(PPh₃)₂(µ₃-Bi), (**4**, 83% yield). Spectral data for **4**: IR v_{CO} (cm⁻¹ in CH₂Cl₂) 2046(m), 2014(s), 1984 (s), 1952 (vw); ³¹P {¹H} NMR (CDCl₃) δ = -11.13 ppm (s, 2 PPh₃). ES (positive)/MS for **4**: *m/z* = 1506 (M⁺⁺). The isotope distribution pattern is consistent with the presence of three iridium atoms and one bismuth atom.

2.1.4. Synthesis of $Ir_3(CO)_6(PPh_3)_3(\mu_3-Bi)$, 5

A 17.0 mg (0.065 mmol) portion of PPh₃ was added to 33.0 mg (0.022 mmol) of **1** that was dissolved in 15 mL of methylene chloride. The reaction was heated to reflux for 3 h. The solvent was then removed *in vacuo*, and the product was isolated by TLC with a 6/1 hexane/methylene chloride solvent ratio as the eluent. This gave 27.8 mg (0.016 mmol) of dark orange Ir₃(CO)₆(PPh₃)₃(µ₃-Bi), **5** (73% yield). Spectral data for **5**: IR v_{CO} (cm⁻¹ in CH₂Cl₂) 2006(m), 1973(vs), 1951 (s); ³¹P {¹H} NMR (CDCl₃) δ = -4.96 ppm (s, 3 PPh₃) ES (positive)/MS for **5**: m/z = 1740 (M⁺⁺). The isotope distribution pattern is consistent with the presence of three iridium atoms and one bismuth atom.

2.1.5. Synthesis of Ir₆(CO)₁₂(PPh₃) (µ₃-Bi) (µ₄-Bi)₃, **6**

A 12.0 mg (0.046 mmol) portion of PPh₃ were added to 10.0 mg (0.005 mmol) of **2** that had been previously dissolved in 10 mL of benzene. The reaction was heated to reflux for 0.5 h. The solvent was then removed *in vacuo*, and the product was isolated by TLC with a 4/1 hexane/methylene chloride solvent ratio as the eluent. This gave 8.00 mg (0.0040 mmol) of brown Ir₆(CO)₁₂(PPh₃) (µ₃-Bi) (µ₄-Bi)₃, **6** (69% yield). Spectral data for **6**: IR vCO (cm⁻¹ in CH₂Cl₂) 2062 (w), 2027(s), 2008 (m), 1983 (w). ³¹P {¹H} NMR (CD₂Cl₂) $\delta = -27.35$ ppm (s, 1 PPh₃) ES (negative)/MS for **6**: *m/z* = 2205 (M + Cl⁻). The isotope distribution pattern is consistent with the presence of six iridium atoms and two bismuth atoms.

2.1.6. Synthesis of $Ir_3(CO)_6(PPh_3)(\mu-C_6H_4PPh_2)(\mu-H)(\mu_3-Bi)$, 7

A 17.0 mg (0.011 mmol) portion of **4** was dissolved in 15 mL of benzene. The reaction mixture was heated to reflux for 5.5 h. The solvent was then removed *in vacuo*, and the product was isolated by TLC with a 6/1 hexane/methylene chloride solvent ratio as the eluent. This gave 14.6 mg (0.010 mmol) of orange $Ir_3(CO)_6(PPh_3)(\mu-C_6H_4PPh_2)(\mu-H)(\mu_3-Bi)$, **7** (87% yield). Spectral data for **7**: IR vCO (cm⁻¹ in CH₂Cl₂) 2039 (m), 2016(vs), 1988 (s), 1948 (w). ¹H NMR (CD₂Cl₂): $\delta = -19.78$ (d, 1H, $J_{P-H} = 9$ Hz), 7.54–7.10 ppm (m, 25H, phenyls on PPh₃ and PPh₂), 5.90 (t d, 1H, H₅₂, ³ $J_{P-H} = 9$ Hz, ³ $J_{H-H} = 7$ Hz), 6.69 (d of t, 1H, H₅₃, ³ $J_{H-H} = 7$ Hz), 6.93 (dt, 1H, H₅₄, ³ $J_{H-H} = 6.4$ Hz). ³¹P {¹H} NMR

Please cite this article in press as: R.D. Adams, G. Elpitiya, Journal of Organometallic Chemistry (2015), http://dx.doi.org/10.1016/ j.jorganchem.2015.08.001 Download English Version:

https://daneshyari.com/en/article/7756507

Download Persian Version:

https://daneshyari.com/article/7756507

Daneshyari.com