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a b s t r a c t

This paper focuses on a class of multiaxial fatigue limit criteria where the equivalent shear stress ampli-
tude is calculated by means of a scalar measure associated with a hypersurface enclosing the deviatoric
stress history at a material point. We consider two hypersurfaces proposed by the authors, namely the
maximum prismatic hull and the minimum Frobenius norm ellipsoid. Previous results obtained with
elliptic and non-elliptic stress paths strongly suggested that such measures might always be the same.
In this work we consider two counter-examples which show that these approaches are distinct. Fatigue
limit criteria based on the linear combination of these measures with the maximum hydrostatic stress
were applied to experimental data including: axial–torsional, biaxial tension and plane stress tests per-
formed under harmonic and non-harmonic, synchronous and asynchronous waveforms. The predictions
for both criteria fell within a 15% scatter band.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

High-cycle fatigue is a failure mode which can occur at a mate-
rial point of a mechanical component due to variations of macro-
scopic elastic stresses which activate damage at the mesoscopic
scale [1–6]. In this multiscale framework, the fatigue process
may lead to one of the following situations: whenever the accumu-
lated mesoscopic damage is unbounded, the initiation of a visible
crack is expected and the component will eventually fail after a fi-
nite period of solicitation; on the other hand, when the accumu-
lated damage is bounded, a condition termed mesoscopic
shakedown, the component is presumed to indefinitely (in practice
more than 106 cycles) sustain the applied loading.

We consider the formulation and assessment of fatigue limit
criteria based on new definitions for the shear stress amplitude
within the setting of multiaxial stress histories. In particular, we
assess the following measures proposed by the present authors:
the maximum prismatic hull [7,8] and the minimum Frobenius
norm (F-norm) ellipsoid [6]. Roughly speaking, in [7,8] the shear
stress amplitude is associated with the sizes of the faces of a prop-
erly oriented rectangular prismatic hull enclosing the stress his-
tory, whereas [6] considers the radii of the minimum ellipsoid
enclosing the stress history.

Our motivation for this work is that previous investigation
[7,8] showed that the application of the maximum prismatic hull
and the minimum F-norm ellipsoid to compute the amplitude of
elliptic paths are equivalent. Besides, for some non-elliptical paths
the computation of these measures also provided the same values
[9]. These results strongly suggested that such measures might al-
ways be the same. Here we evaluated these measures against a
wider range of non-elliptical paths and detected that in two cases
the measures are different. In addition to this main result, we as-
sessed fatigue criteria based on these measures against a large set
of multiaxial fatigue limit data – including axial–torsional, biaxial
tension and plane stress tests performed under harmonic and
non-harmonic, synchronous and asynchronous waveforms. The
predictions for both criteria fell within a 15% scatter band. For
comparative purposes, other studies which analysed some of the
experimental data considered in this work can be found in [10–
13].

2. Preliminary definitions

The stress state at a material point is denoted by r. It may be
decomposed into spherical and deviatoric parts as

r ¼ rmI þ S ð1Þ

where rm :¼ ðtrrÞ=3 is the mean (or hydrostatic) stress, tr ð�Þ is the
trace operator and I is the identity tensor. The deviatoric tensor is
given by S ¼ r� rmI and satisfies trS ¼ 0.

We shall consider the following orthonormal basis for the five-
dimensional space of symmetric deviators
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dð1Þ :¼ 1ffiffiffi
6
p ð2ex � ex � ey � ey � ez � ezÞ

dð2Þ :¼ 1ffiffiffi
2
p ðey � ey � ez � ezÞ

dð3Þ :¼ 1ffiffiffi
2
p ðex � ey þ ey � exÞ

dð4Þ :¼ 1ffiffiffi
2
p ðex � ez þ ez � exÞ

dð5Þ :¼ 1ffiffiffi
2
p ðey � ez þ ez � eyÞ ð2Þ

where ex, ey and ez are unit vectors of a coordinate system and �
denotes tensor product. Then, a stress deviator is represented as
the linear combination

S ¼
X5

i¼1

Sid
ðiÞ ð3Þ

with components given as

S1 ¼
1ffiffiffi
6
p ð2rx � ry � rzÞ; S2 ¼

1ffiffiffi
2
p ðry � rzÞ;

S3 ¼
ffiffiffi
2
p

rxy; S4 ¼
ffiffiffi
2
p

rxz; S5 ¼
ffiffiffi
2
p

ryz ð4Þ

The Frobenius norm of a deviatoric tensor is defined as

jjSjj ¼
ffiffiffiffiffiffiffiffiffi
S � S
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1 þ S2
2 þ S2

3 þ S2
4 þ S2

5

q
ð5Þ

3. Fatigue limit criteria

The input data for a high-cycle fatigue analysis is defined by a
set of elastic stresses D ¼ frk; k ¼ 1 : mg at a material point. This
information can be the result of purely elastic or steady-state elas-
to-plastic responses of a mechanical component subject to a vari-
able loading. In the former case, the applied loading is such that
no plastic deformations are produced during the entire life of a
mechanical component and hence the input stress data are the re-
sult of m elastic analyses. In the latter case, called elastic shake-
down, the applied loading produces a bounded amount of plastic
deformation leading to a fixed residual stress distribution which
renders a purely elastic response. The computation of the elastic
shakedown state may be performed either by incremental or direct
approaches [14–16].

The fluctuation of macroscopic elastic stresses at a material
point can produce material transformations at the mesoscopic le-
vel. In this setting, failure by high-cycle fatigue is the consequence
of inelastic mesoscopic adaptation, i.e. an unbounded damage pro-
cess which leads to the initiation of a macroscopic crack. On the
other hand, infinite endurance shall take place if the macroscopic
stress variations induces mesoscopic elastic shakedown.

In order to construct a mathematical model to quantify the fa-
tigue limit phenomenon, we assume that the stresses D render infi-
nite endurance if

FðDÞ 6 0 ð6Þ

where the admissibility function Fð�Þ characterizes the fatigue
behavior of a material. Following [6–8,17], the fatigue limit criteria
investigated in this work are written as

FðDÞ :¼ 1ffiffiffi
2
p Sa þ armc � b 6 0 ð7Þ

where Sa ¼ SaðDdevÞ is an amplitude associated with the set of devi-
atoric stresses Ddev ¼ fSk; k ¼ 1 : mg, rmc ¼ maxr2D frmg is the max-
imum hydrostatic stress, while a and b are material parameters.
Fatigue criteria of this type are insensitive to a superimposed mean
shear stress, but sensitive to hydrostatic stresses, as commonly ob-
served in high-cycle fatigue of metals (see [18–20] and references
therein).

For this class of fatigue criteria, the main issue lies in a proper
definition of the stress amplitude within the setting of a five-
dimensional deviatoric space. In order to get a geometrical insight
into this problem, it is helpful to observe that, when stresses are
proportional or affine, a natural measure would be half the length
of the line segment described by the deviatoric stresses. On the
other hand, for more complex paths, a number of different ampli-
tudes may be defined (see, for instance, Fig. 1). In order to tackle
this problem, one of the approaches proposed in the literature
[6–8,21,22] defines a hyper-solid which encloses the deviatoric
stresses acting on a material point and then chooses some scalar
measure associated to the hyper-solid which quantifies the in-
duced fatigue damage.

Next, we consider some definitions for the deviatoric stress
amplitude. The model proposed by Crossland [17] considers that
the shear stress amplitude is the radius of a ball enclosing the devi-
atoric stress history. This quantity can be computed as

Sa :¼min
A

max
S
fjjS � Ajj jS 2 Ddevg ð8Þ

where A stands for the center of the ball. It should be remarked that
this model is not able to distinguish linear and affine paths from
more complex ones, although experimental observations have
shown that these paths may produce distinct fatigue damage
[20,21,23].

Mamiya and Araújo [7,8,24] propose a measure for the shear
stress amplitude based on the largest prismatic hull enclosing
the deviatoric stress path. Let

aiðhÞ :¼ 1
2
ðmax Si �min SiÞ; i ¼ 1 : 5 ð9Þ
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Fig. 1. Definitions for the shear stress amplitude.
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