ARTICLE IN PRESS

Journal of Organometallic Chemistry xxx (2015) 1-9

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Arene ruthenium dithiolato—carborane complexes for boron neutron capture therapy (BNCT)

Isolda Romero-Canelón ^a, Ben Phoenix ^b, Anaïs Pitto-Barry ^a, Johanna Tran ^a, Joan J. Soldevila-Barreda ^a, Nigel Kirby ^c, Stuart Green ^{b, *}, Peter J. Sadler ^{a, *}, Nicolas P.E. Barry ^{a, *}

^a Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
^b School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK
^c Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia

ARTICLE INFO

Article history: Received 6 March 2015 Received in revised form 7 May 2015 Accepted 8 May 2015 Available online xxx

Dedicated to Professor Georg Süss-Fink on the occasion of his 65th birthday

Keywords: Arene ruthenium Carborane Pluronic Micelles Boron neutron capture therapy

ABSTRACT

We report the effect of low-energy thermal neutron irradiation on the antiproliferative activities of a highly hydrophobic organometallic arene ruthenium dithiolato–carborane complex [Ru(*p*-cymene) (1,2-dicarba-*closo*-dodecarborane-1,2-dithiolato)] (**1**), and of its formulation in Pluronic[®] triblock copolymer P123 core–shell micelles (RuMs). Complex **1** was highly active, with and without neutron irradiation, towards human ovarian cancer cells (A2780; IC₅₀ 0.14 μ M and 0.17 μ M, respectively) and cisplatin-resistant human ovarian cancer cells (A2780cisR; IC₅₀ 0.05 and 0.13 μ M, respectively). Complex **1** was particularly sensitive to neutron irradiation in A2780cisR cells (2.6 \times more potent after irradiation compared to non-irradiation). Although less potent, the encapsulated complex **1** as RuMs nanoparticles resulted in higher cellular accumulation (2.5 \times), and was sensitive to neutron irradiation in A2780 cells (1.4 \times more potent upon irradiation compared to non-irradiation compared to non-irradiation compared to non-irradiation (2.5 \times).

© 2015 Elsevier B.V. All rights reserved.

Introduction

Boron neutron capture therapy (BNCT) has raised considerable interest for the treatment of high-grade gliomas and either cutaneous primaries or cerebral metastases of melanoma [1]. This binary method consists of the nuclear reaction of nontoxic and nonradioactive ¹⁰B atoms and low-energy thermal neutrons that produces high-energy ⁴He²⁺ α -particles and ⁷Li³⁺ ions. The dissipation of the high kinetic energy of these particles is achieved in a small distance (less than one cell diameter), which allows accurate destruction of the targeted cells [2].

Dicarba-*closo*-dodecarboranes are a class of boron-rich compounds with globular structure and diameter of *ca*. 1 nm (diameter of a rotating phenyl) that possess unusual properties, including high symmetry and remarkable stability [3]. These clusters contain

http://dx.doi.org/10.1016/j.jorganchem.2015.05.011 0022-328X/© 2015 Elsevier B.V. All rights reserved. ten boron atoms; they possess a rather low cytotoxicity and are extremely stable in biological media. They are well suited to boron neutron capture therapy [4,5], but also have potential in other fields of drug discovery, molecular imaging, and targeted radionuclide therapy [6]. However, effective delivery of boron agents is still a critical issue which impairs their further clinical development [7]. We have recently discussed how the combination of arene ruthenium(II) complexes and carboranes has unexplored potential in medicine [8]. Such complexes also exhibit unusual chemistry: coordination of the bulky, electron-deficient carborane ligand 1,2dicarba-closo-dodecarborane-1,2-dithiolato to an arene-Ru metal center leads to the isolation of a stable 16-electron complex [Ru(pcymene) (1,2-dicarba-closo-dodecarborane-1,2-dithiolato)] (1) [9]. However, since this complex is highly hydrophobic, exploration of its biological applications is hampered by the lack of solubility in water [10]. To exploit the chemistry of carborane-containing arene ruthenium complexes in aqueous solution, and to take advantage of their unique properties, we have encapsulated the 16-electron complex **1** in Pluronic[®] triblock copolymer P123 micelles (Fig. 1). We have recently shown that although entrapment of the 16-

Please cite this article in press as: I. Romero-Canelón, et al., Journal of Organometallic Chemistry (2015), http://dx.doi.org/10.1016/j.jorganchem.2015.05.011

^{*} Corresponding authors.

E-mail addresses: Stuart.Green@uhb.nhs.uk (S. Green), P.J.Sadler@warwick.ac.uk (P.J. Sadler), N.Barry@warwick.ac.uk (N.P.E. Barry).

ARTICLE IN PRESS

I. Romero-Canelón et al. / Journal of Organometallic Chemistry xxx (2015) 1-9

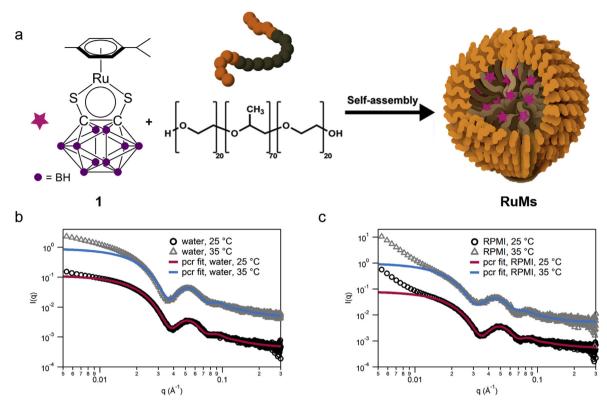


Fig. 1. (a) Self-assembly formation of **RuMs** (purple dots in 1 are B–H vertices). (b) and (c) Small-angle X-ray scattering (SAXS) experimental profiles and fitting with spherical core–shell micelle model of micelles **RuMs** at 25 °C and 35 °C in water and at 25 °C and 35 °C in RPMI, respectively; 5 mg/mL aqueous solutions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

electron complex **1** in Pluronic[®] micelles (**RuMs**) leads to a reduction in its anticancer potency towards ovarian cancer cells A2780, the micelles exhibit enhanced selectivity towards cancer cells compared to normal cells (up to a factor 8) [11]. This formulation was fully characterised by using a combination of analytical techniques, including synchrotron small-angle X-ray scattering, highresolution transmission electron microscopy, and light scattering methods [11]. Polymer encapsulation of metal carborane complexes provides the potential for delivering high amounts of boron to cells which is of interest for BNCT [12]. We report here the effect of low-energy thermal neutron irradiation on the antiproliferative activity of both complex **1** and **RuMs** particles in the A2780 ovarian cancer cell line, and in A2780cisR cisplatin-resistant cancer cell line.

Results

Synthesis and characterisation

The organometallic half-sandwich Ru^{II} arene complex [Ru(*p*-cymene) (1,2-dicarba-*closo*-dodecarborane-1,2-dithiolate)] (**1**) was synthesised as reported previously [13]. This complex has a *pseudo*-octahedral structure, with a π -bonded arene occupying 3 coordination sites, a S-bound chelated dithiolato dicarba-*closo*-dodecarborane ligand, and a vacant 6th site (Fig. 1). It is a 16-electron complex and therefore electron-deficient at the metal [14]. Complex **1** is highly hydrophobic and insoluble in water [15]. To achieve dispersion in water [16], we encapsulated complex **1** in the water-soluble amphiphilic triblock copolymer P123 (poly(ethylene glycol)-*block*-poly(propylene glycol)-*block*-poly(ethylene glycol)) (PEO-*b*-PPO-*b*-PEO), according to a previously reported procedure (Fig. 1) [11].

To gain further insight into the structure of **RuMs** in RPMI cell culture medium, and to compare the sizes of the assembly in RPMI *versus* water at ambient temperature and at 35 °C, solutions of **RuMs** were analysed by synchrotron small-angle X-ray scattering (SAXS; Fig. 1). The experimental profiles were fitted using IgorPro software [17] to a core–shell spherical micelle model Poly-CoreShellRatio [18] (PCR) according to a previous procedure for similar micelles [19]. Some aggregation was observed for all the samples (high turn at low q values), however the PCR model fitted excellently for all micellar solutions from 0.2 Å⁻¹ with very low dispersity parameters (between 0.13 and 0.16, 0 being an ideal mono-disperse system; Table 1).

Cell testing

We studied the time-dependence of the antiproliferative activity of complex 1 and micelles RuMs and P123Ms (micelles made of Pluronic[®] copolymers without complex **1**) in A2780 human ovarian cancer cells (Table 2). Cells were exposed for variable times (1, 4, 16, 24, 48 and 72 h) to complex 1 (dissolved in 5% dimethyl sulfoxide (dmso)/95% saline:RPMI and further diluted in cell culture medium until working concentrations were achieved) or to RuMs micelles (dissolved in 100% saline:RPMI, further diluted with cell culture medium to working solutions). After this, drugs were removed and cells were washed and placed in fresh growth medium for a further 72 h as a recovery period. Cell viability was then assessed using the sulforhodamine B (SRB) colorimetric assay. Complex 1 was found to be highly potent towards A2780 cells (Table 2), particularly after 24 h of drug exposure (IC_{50} 170 nM), and it is also 39 \times more potent than RuMs micelles, which still exhibit good (micromolar) activity towards cancer cells.

Since the optimum time for drug exposure was 24 h, we determined the IC_{50} values of complex **1** and micelles **RuMs** in A2780cisR cells after 24 h of drug exposure. Complex **1** was found

Download English Version:

https://daneshyari.com/en/article/7756750

Download Persian Version:

https://daneshyari.com/article/7756750

Daneshyari.com