ARTICLE IN PRESS

Journal of Organometallic Chemistry xxx (2014) 1-4

FISEVIER

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

A (Ni-SIr)_I model for [NiFe]hydrogenase

Takahiro Matsumoto ^{a, b, c}, Tatsuya Ando ^{a, b}, Yuki Mori ^{b, c}, Takeshi Yatabe ^{a, b, c}, Hidetaka Nakai ^{a, b}, Seiji Ogo ^{a, b, c, *}

- ^a Center for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- b Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- c International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan

ARTICLE INFO

Article history: Received 26 August 2014 Received in revised form 18 September 2014 Accepted 20 September 2014 Available online xxx

Dedicated to Professor Georg Süss-Fink on the occasion of his 65th birthday.

Keywords: Dihydrogen Hydrogenase Model

ABSTRACT

We report the synthesis and characterization of a μ -hydroxo NiRu complex as a model for the active site of (Ni–SIr)_I of [NiFe]hydrogenase. This is the first example of the (Ni–SIr)_I model with a bridging hydroxo ligand between dimetal centers and an available coordination site on Ni center cis to the bridging hydroxo ligand. We have determined the structure of the (Ni–SIr)_I model complex by X-ray analysis and reported reversible switching between the catalytically inactive (Ni–SIr)_{II} and a catalytically active (Ni–SIr)_{II} models. © 2014 Elsevier B.V. All rights reserved.

Introduction

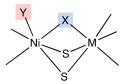
[NiFe]hydrogenase ([NiFe]H₂ase) catalyzes reversible activation of H_2 into $2H^+$ and $2e^-$ via heterolytic cleavage of H_2 [1]. The active site of [NiFe]H₂ase provides two possible H₂-coordination sites, X and Y as shown in Fig. 1 [1g]. Which of these sites is responsible for binding to H_2 , however, remains a matter of controversy [1].

Based on our previous model studies, we have proposed that the X position is the key site for H_2 activation [2,3]. The principle evidence for binding to the Y site comes from a crystal structure of [NiFe] H_2 ase which bears a CO ligand at the Y position [4]. Since CO is known to deactivate [NiFe] H_2 ase, it is thought that the coordinated CO ligand must therefore indicate the H_2 binding site.

The principle problem with this latter interpretation, however, is that $(Ni-SIr)_I$ (EPR-silent ready state I) bears a vacant Y site but is catalytically inactive toward H_2 (Fig. 2) [1,5]. When the X site is made available by protonation of the OH^- ligand to a labile H_2O ligand $\{(Ni-SIr)_{II}$ (EPR-silent ready state II)}, H_2 activation is enabled [1,6]. The catalytically active $(Ni-SIr)_{II}$ is an unobservable intermediate with two available coordination sites $(H_2O$ and Y). The

E-mail address: ogo.seiji.872@m.kyushu-u.ac.jp (S. Ogo).

http://dx.doi.org/10.1016/j.jorganchem.2014.09.025 0022-328X/© 2014 Elsevier B.V. All rights reserved. $(Ni-SIr)_{II}$ releases H_2O to afford Ni-SIa (EPR-silent active state). The Ni-SIa is reactive toward H_2 , which has two available coordination sites (X and Y).


In view of this controversy, we felt in important to construct a structurally accurate model of (Ni–SIr)_I and investigate its properties. Here, we report a NiRu complex as the first example of a (Ni–SIr)_I model complex, [Ni^{II}L(NO₃)(μ -OH)Ru^{II}(η^6 -C₆Me₆)] (1, L = *N*,*N*′-dimethyl-3,7-diazanonane-1,9-dithiolato), with a bridging OH⁻ ligand between dimetal centers and an available coordination site on Ni center *cis* to the OH⁻ ligand [7,8], and demonstrate which X or Y coordination sites is necessary for H₂ activation.

Results and discussion

The μ -hydroxo Ni^{II}Ru^{II} complex **1** as a model for (Ni–SIr)_I was produced from deprotonation of an aqua Ni^{II}Ru^{II} complex, [Ni^{II}L-Ru^{II}(H₂O)(η^6 -C₆Me₆)](NO₃)₂ {[**2**](NO₃)₂} as a model for (Ni–SIr)_{II} [2b], in H₂O. The deprotonation process was followed by means of a titration experiment to establish the pK_a value of the H₂O ligand. Complex **2** was dissolved in H₂O and titrated with 100 mM NaOH/H₂O under an N₂ atmosphere (Fig. 3). This titration shows that the pK_a value is 8.5 \pm 0.1 and the change is reversible [3b,9]. Although the pK_a value of (Ni–SIr)_I has been reported as 7.8 \pm 0.1, it has not been conclusively established whether a bridging cysteine or OH⁻ is protonated at this pH [10].

^{*} Corresponding author. Center for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.

T. Matsumoto et al. / Journal of Organometallic Chemistry xxx (2014) 1-4

Fig. 1. Possible coordination sites, X (blue-shaded area) and Y (red-shaded area), of active site of [NiFe] H_2 ase (M = Fe, X = H_2 O, OH $^-$, or vacant coordination site and Y = vacant coordination site as shown in Fig. 2) and our models (M = Ru, X = H_2 O or OH $^-$ and Y = NO₃ $^-$). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The structure of **1** was characterized by X-ray analysis (Fig. 4) as well as electrospray ionization-mass spectrometry (ESI-MS) and X-ray photoelectron (XP) and EPR spectroscopy (Figs. S1-S3).

The framework of **1** is based around a NiS₂Ru butterfly core bridged by the OH⁻ ligand (Fig. 4). The Ni atom adopts distorted octahedral coordination that is drastically changed by deprotonation of the H₂O ligand of **2**. One of the *N*-donor of N₂S₂ ligand, previously occupying the equatorial plane, moved to an axial

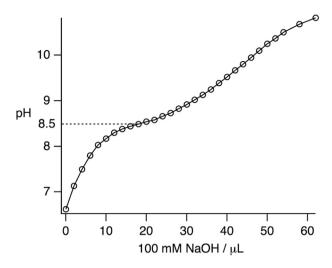


Fig. 3. pH titration of 2 (5.0 mM, 1.0 mL) with 100 mM NaOH/H $_2$ O in H $_2$ O under an N $_2$ atmosphere.

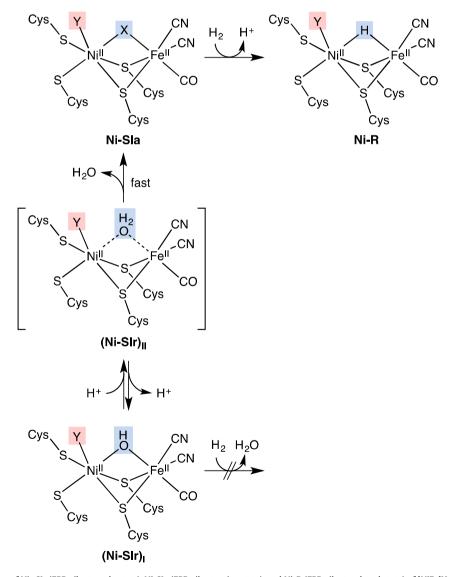


Fig. 2. Schematic representation of Ni–SIr (EPR-silent ready state), Ni-SIa (EPR-silent active state), and Ni-R (EPR-silent reduced state) of [NiFe]H₂ase. X (blue-shaded area) and Y (red-shaded area) = vacant coordination sites. (Ni–SIr)_{II} is unreactive toward H₂, which has one available coordination site (Y). (Ni–SIr)_{II} is unobservable, which has two available coordination sites (H₂O and Y). Ni-SIa is reactive toward H₂, which has two available coordination sites (X and Y). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Download English Version:

https://daneshyari.com/en/article/7756775

Download Persian Version:

https://daneshyari.com/article/7756775

Daneshyari.com