[Journal of Organometallic Chemistry 792 \(2015\) 177](http://dx.doi.org/10.1016/j.jorganchem.2015.04.014)-[183](http://dx.doi.org/10.1016/j.jorganchem.2015.04.014)

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Exchange of alkyl and tris(2-mercapto-1-t-butylimidazolyl) hydroborato ligands between zinc, cadmium and mercury

Ava Kreider-Mueller, Patrick J. Quinlivan, Yi Rong, Jonathan S. Owen^{*}, Gerard Parkin^{*} Department of Chemistry, Columbia University, New York, NY 10027, USA

article info

Article history: Received 13 February 2015 Received in revised form 7 April 2015 Accepted 8 April 2015 Available online 29 April 2015

Dedicated with respect to Mike Mingos on the occasion of his 70th birthday. Happy birthday, Mike!

Keywords: Zinc Cadmium Mercury Alkyl Tris(2-mercaptoimidazolyl)hydroborato Exchange

Introduction

The exchange of alkyl, aryl and cyclopentadienyl groups between metal centers is an important method for synthesizing a variety of organometallic compounds [\[1\].](#page--1-0) For example, transition metal alkyl compounds are often synthesized via metathesis of a transition metal halide compound with main group metal alkyls such as RLi, RMgX, and R₂Zn. In addition to their use in the synthesis of organometallic compounds of transition metals, main group metal alkyl compounds have found other applications. For example, $Et₂Zn$ [\[2\]](#page--1-0) is an important chain transfer agent in olefin polymerization for the control of molecular weight distributions [\[3\]](#page--1-0); furthermore, it has also been used as an effective means to shuttle growing polymer chains between different catalyst centers, thereby affording a novel method for forming block copolymers [\[4\].](#page--1-0) Here we describe a series of reactions that involve exchange of alkyl and other ligands between Group 12 metals.

* Corresponding authors.

ABSTRACT

The tris(2-mercaptoimidazolyl)hydroborato ligand, $[Tm^{Bu^t}]$, has been used to investigate the exchange of alkyl and sulfur donor ligands between the Group 12 metals, Zn, Cd and Hg. For example, $[\text{Im}^{\text{But}}]_2$ Zn reacts with Me₂Zn to yield $[Tm^{But}]ZnMe$, while $[Tm^{But}]CdMe$ is obtained readily upon reaction of $[Tm^{But}]$ ₂Cd with Me₂Cd. Ligand exchange is also observed between different metal centers. For example, $[\text{Im}^{\text{Bu}^t}]\text{CdMe}$ reacts with Me₂Zn to afford $[\text{Im}^{\text{Bu}^t}]\text{ZnMe}$ and Me₂Cd. Likewise, $[\text{Im}^{\text{Bu}^t}]\text{HgMe}$ reacts with Me₂Zn to afford [Tm^{But}]ZnMe and Me₂Hg. However, whereas the [Tm^{But}] ligand transfers from mercury to zinc in the methyl system, $[Tm^{But}]HgMe/Me_2Zn$, transfer of the $[Tm^{Bu'}]$ ligand from zinc to mercury is observed upon treatment of $[\text{Tm}^{\text{Bu}'}]_2$ Zn with HgI₂ to afford $[\text{Tm}^{\text{Bu}'}]$ HgI and $[\text{Tm}^{\text{Bu}'}]$ ZnI. These observations demonstrate that the phenomenological preference for the $[\text{Im}^{\text{Bu}^t}]$ ligand to bind one metal rather than another is strongly influenced by the nature of the co-ligands.

© 2015 Elsevier B.V. All rights reserved.

Results and discussion

While zinc $[3-6]$ $[3-6]$ $[3-6]$ and, to a lesser extent, cadmium $[5,7]$ dialkyls have important applications, the mercury counterparts find little utility due to their extreme toxicity $[8]$. One of the factors responsible for the toxicity of organomercury compounds is the high affinity of mercury for sulfur $[8-10]$ $[8-10]$ $[8-10]$ such that it binds effectively to the cysteine residues in proteins and enzymes [\[11\]](#page--1-0), and also displaces zinc from cysteine rich structural and catalytic sites [\[9,12,13\].](#page--1-0) Therefore, in addition to examining alkyl group exchange, it is also pertinent to examine exchange reactions involving sulfur ligands.

Previous studies have demonstrated that tris(2-mercaptoimidazolyl)hydroborato ligands, $\text{[Tm}^R\text{]}$ [\[14](#page--1-0)–[18\],](#page--1-0) are a useful class of L₂X $[19]$ $[S_3]$ donors that provide a sulfur-rich coordination environment for a variety of metals ([Fig. 1\)](#page-1-0). For example, the t-butyl derivative, [Tm^{But}], has been used to synthesize a variety of zinc $[20-22]$ $[20-22]$, cadmium $[21,23]$ and mercury $[21,24]$ complexes, which provides a basis for us to investigate alkyl exchange reactions of these metals [\[25\]](#page--1-0).

Whereas the aforementioned synthetic use of main group alkyls involves the exchange of alkyl groups between different metals, alkyl transfer between centers involving the same metal is also

E-mail addresses: jso2115@columbia.edu (J.S. Owen), parkin@columbia.edu (G. Parkin).

$[Tm^R]M$

Fig. 1. [Tm^R] ligands in their κ^3 -coordination mode.

possible. For example, the Schlenk equilibrium involving the interconversion of Grignard reagents and the corresponding dialkyl magnesium compounds provides an excellent illustration of this type of transformation [\[26\].](#page--1-0)

We have now demonstrated that a similar type of transformation exists between $\text{[Tm}^{\text{But}}\text{]}$ MMe and $\text{[Tm}^{\text{But}}\text{]}_2\text{M/Me}_2\text{M}$, and that the reaction lies heavily in favor of the heteroleptic derivative, $[Tm^{But}]M$ Me. Thus, treatment of $[Tm^{But}]_{2}Zn$ [\[22\]](#page--1-0) with Me₂Zn results three junions, the fact of $\left[\text{Im}^{\text{But}}\right]$ and $\left[\text{20a}\right]$, as illustrated in the facile formation of $\left[\text{Im}^{\text{But}}\right]$ znMe $\left[\text{20a}\right]$, as illustrated in Scheme 1. Likewise, $[Tm^{Bu^t}]$ CdMe [\[23\]](#page--1-0) is rapidly obtained upon reaction of $\text{[Tm}^{\text{But}}\text{]}_2\text{Cd}$ [23] [23] [23] with Me₂Cd.

The formation of $\text{[Tm}^{\text{But}}\text{]}Z$ nMe and $\text{[Tm}^{\text{But}}\text{]}C$ dMe by these reactions provides a useful method of synthesis from the sodium complex because $\text{[Tm}^{\text{But}}]_2$ M may be generated via the reactions of $[Tm^{Bu^t}]$ Na [\[17,27\]](#page--1-0) with MCl₂ (M = Zn, Cd), as illustrated in Scheme 2. Specifically, $[\text{Im}^{\text{Bu}^t}]\text{MMe}$ can be obtained from $[\text{Im}^{\text{Bu}^t}]\text{Na}$ in a single reaction flask via a two-step sequence that involves (i) treatment of 2 equivalents of $[Tm^{Bu'}]Na$ with MCl₂ to generate $[Tm^{Bu'}]_2M$, followed by (*ii*) treatment with Me₂M to afford $[Tm^{But}]M$ Me (Scheme 3). An important advantage of this method is that it does not require the use of the thallium reagent $[Tm^{But}]T1$ [\[27\].](#page--1-0) Thus, although $[Tm^{Bu^t}]$ MMe may be synthesized directly via the reactions of Me₂M with $[Tm^{Bu^t}]$ Tl, the latter compound is also synthesized from $[Tm^{Bu^t}]$ Na by treatment with Tl(OAc) [\[27\]](#page--1-0). As such, it is evident that the method of synthesis of $[Tm^{Bu'}]MMe$ from $[Tm^{Bu'}]Na$

Scheme 1. Formation of $[Tm^{Bu'}]$ MMe by treatment of $[Tm^{Bu'}]_2$ M with Me₂M (M = Zn, Cd).

Scheme 2. Formation of $[Tm^{Bu'}]_2M$ from MCl₂ (M = Zn, Cd) and $[Tm^{Bu'}]Na$.

Scheme 3. Synthesis of $[Tm^{Bu'}]MMe$ from $[Tm^{Bu'}]Na$ by sequential reaction with MCl_2 and Me_2M ($M = Zn$, Cd).

Download English Version:

<https://daneshyari.com/en/article/7756882>

Download Persian Version:

<https://daneshyari.com/article/7756882>

[Daneshyari.com](https://daneshyari.com/)