ELSEVIER Contents lists available at ScienceDirect ## Journal of Solid State Chemistry journal homepage: www.elsevier.com/locate/jssc ## Y₂S₃ - Y₂O₃ phase diagram and the enthalpies of phase transitions P.O. Andreev^{a,*}, L.A. Pimneva^b - ^a University of Tyumen, 6 Volodarskogo St, 625003 Tyumen, Russia - ^b Federal State budget institution of higher education "Tyumen Industrial University", 38 Volodarskogo St, 625000 Tyumen, Russia #### ARTICLE INFO #### Keywords: Yttrium sulfide Yttrium oxysulfide Phase diagram Thermal analysis Melting enthalpy Phase transformation #### ABSTRACT A phase diagram of the $Y_2S_3-Y_2O_3$, system has been defined from 1000 K to melts for the first time; the enthalpies of phase transitions in the systems have been determined. The monoclinic phase δ - Y_2S_3 ($P2_1/m$, a=1.7523(8) nm, b=0.4010(9) nm, c=1.0170(7) nm, $\beta=98.60(6)^\circ$; microhardness $H=411\pm7$ HV) transforms at 1716 ±7 K to the unquenchable high-temperature phase ξ - Y_2S_3 , $\Delta H=29\pm6$ J/g (7.9 KJ/mol) as determined by DSC. The quenching can't latch the Y_2S_3 -phase. The melting point of Y_2S_3 is 1888 ± 7 K; $\Delta H=150\pm28$ J/g (41.1 KJ/mol). Y_2OS_2 has a monoclinic structure (P21/c, a=0.8256(8) nm, b=0.6879(8) nm, c=0.6848(8) nm, $\beta=99.52(6)$, $H=491\pm13$ HV) and melts incongruently at 1790 ±8 K, $\Delta H=190\pm45$ J/g (52 KJ/mol) by the scheme $Y_2OS_2 \leftrightarrow Y_2O_2S + L$ (16 mol% Y_2O_3). Y_2O_2S has a hexagonal structure (a=0.3784(5) nm, c=0.6584(4) c=0.6888(4) c=0 #### 1. Introduction Yttrium dioxosulfide Y_2O_2S ($1Y_2S_3$ $2Y_2O_3$), a member of Ln_2O_2S (Ln = La-Lu) family, is used as a matrix in crystal phosphor design [1,2]. The doped Y_2O_2S nanoparticles were prepared from electrospun poly(vinylpyrrolidone) composite using sulfur powder [3–5]. The morphology of Y_2O_3 : Eu^{3+} ; Y_2O_3 : Y_2^{3+} ; Y_2^{3+} precursor particles was preserved during the synthesis. Yang et al. fabricated $Y_2O_3S:Eu^{3+}$ nanobelts $6.7 \times 125 \, \text{nm}^2$ in size and the phosphor possessed red emission peaks at 628 and 618 nm under excitation by 325-nm UV light [3]. Han et al. manufactured hollow $Y_2O_3:Eu^{3+}$ nanofibers with the outer diameter averaging $184 \pm 26 \, \text{nm}$ that gave peaks in the red at 628 and 618 nm under excitation by 260-nm UV light [4]. The optimal Eu^{3+} concentration was 3 mol%. Lu et al. fabricated $Y_2O_2S:Yb^{3+}$, Er^{3+} nanofibers having the diameter $105 \pm 13 \, \text{nm}$ using polyvinylpyrrolidone. The nanofibers showed strong green and red emission under excitation at 526, 548, and 668 nm, respectively [5]. The Ce^{3+} doped $Y_2O_2S:Er^{3+}$ luminophore can be used to suppress the visible anti-Stokes luminescence when excited in the range 0.90–0.98 µm [6]. The $(Y_{1-x}Er_x)_2O_2S$ solid solutions were found to luminesce in the range 400–2000 nm under excitation with 790- and 810-nm laser beams [7]. The $(Y_{1-x}Eu_x)_2O_2S$ solid solution shows emission in the range 450–1600 nm under 365- nm excitation [8]. In the $Y_{1.80}Er_{0.10}Yb_{0.10}$ O_2S phosphor, visible luminescence was observed when two resonance infrared photons of different energies were absorbed successively [9]. Complex yttrium oxide compounds, whose structures are related to the Y_2O_2S structure, have been studied as optical materials and solid electrolytes [10,11]. The Y_2O_2S :Eu has lower density compared to Gd_2O_2S :Eu [12,13], which allows to consider them as promising biomarkers for living systems. Y_2S_3/ZnO nanocomposites are efficient photocatalysts for decomposition of organic compounds [14]. In an aqueous phase at pH 7, the Y_2S_3 in the composite should partially hydrolyze to yield yttrium oxysulfides. Nanocrystalline Y_2O_3 :Eu samples are promising light-emitting-diode materials [15]. Luminescence is also typical of salt compounds of yttrium [16]. The extensive studies of Y_2O_2S -based materials and their practical importance make it topical to investigate the Y_2S_3 - Y_2O_3 phase diagram, which will serve as the scientific base of further investigations. Two compounds are formed in the Y_2S_3 - Y_2O_3 system: hexagonal Y_2O_2S , space group $P\overline{3}$ ml, a = 0.3789 nm, c = 0.6588 nm [17]; and monoclinic Y_2OS_2 ($2Y_2S_3$ · $1Y_2O_3$), space group P21/c, a = 0.8255 nm, b = 0.6885 nm, c = 0.6853 nm, β = 99,63°, z = 4 [18]. "Faint yellow brick-shaped single crystals of Y_2OS_2 were produced as a by-product of oxidizing $YClH_{0.67}$ (or $Na_{0.25}YClH_{0.75}$) by sulfur in a tantalum ampoule at 1123 K for 7 days when oxygen-contaminated starting chlorides (e.g., YOCl) were used [18]." There have been no intentional studies of Y₂S₃-Y₂O₃ phase diagram $^{^{}st}$ Corresponding author. Fig. 1. Phase diagram of the Y₂S₃ - Y₂O₃ system: 1 - complete sample melting; 5 - initiation of sample melting. The state of the samples according to physicochemical data: 2 - single phase: 4 - two phases mixture. DTA/DSC data: 3 - liquidus line temperatures. as yet. The boundaries of Y_2O_2S -base solid solutions in the Y_2S_3 - Y_2O_3 system, the thermal stability of Y_2O_2S and Y_2O_2S , and their melting characters and temperatures were not elucidated. The phase transition enthalpy values can be used to calculate the liquidus lines by the Schroeder equation from the melting temperatures and enthalpies [19]. Sesquisulfide δ -Y₂S₃ crystallizes in monoclinic space group P2₁/m with a = 1.7523 nm, b = 0.4010 nm, c = 1.0173 nm, β = 98.60o, z = 6 [18,20,21] and melts congruently at 2010 K [19,21]. Y₂O₃ has a cubic structure of space group Ia3, a = 1.061 nm, z = 16; it transforms to a hexagonal phase (space group P3m1, a = 0.381 nm, c = 0.609 nm, z = 1) at 2550 K; and melts congruently at 2680 K [22]. Thus, the present study is aimed at the exploration of the phase diagram of Y_2S_3 - Y_2O_3 system and determination of enthalpy values for the phase transitions found in the system. #### 2. Experimental Monoclinic δ -Y₂S₃ was prepared in the powder by exposing Y₂O₃ (Russia, 99,98 mol% Y₂O₃) to an H₂S + CS₂ flow at 1270–1370 K [23,24]. Gaseous CS₂ and H₂S were prepared by thermal decomposition of NH₄CNS (Russia, 99 mol% NH₄CNS) [25]. The phase transition sequence was observed to be Y₂O₃ \rightarrow Y₂O₂S \rightarrow δ -Y₂S₃. The phase constitution of samples was monitored by microstructural analysis (MSA) and X-ray powder diffraction. The presence of even individual Y₂OS₂ crystals in δ -Y₂S₃ was detected by microstructural analysis of sintered or cast samples. We prepared single-phase δ -Y₂S₃ powders with a = 1.7523(8) nm, b = 0.4010(9) nm, c = 1.0173(7) nm, β = 98,60(6)°, which correlates with [18]. Y_2O_2S was prepared in the single-phase powder by consecutively exposing $Y_2(SO_4)_3$ (Russia, 99.98 mol% $Y_2(SO_4)_3$) first to an H_2 flow at 770–870 K for 4 h and then to an H_2S flow at 1170–1220 K for 5 h [26]. The Y_2S_3 - Y_2O_3 samples containing 0–60 mol% Y_2O_3 were prepared by alloying Y_2S_3 and Y_2O_2S precursors in graphite crucibles. The 60–100 mol% Y_2O_3 samples were alloyed and annealed in tantalum crucibles. The crucibles were mounted in a silica glass reactor, which was equipped with $\rm Al_2O_3$ thermal screens. The reactor was preevacuated and then filled with Ar (99.998%, Russia) to create an excessive pressure of up to 10 Pa. The thus-prepared cast or sintered samples were then annealed at 1770 K for 0.7–1 h (0–60 mol% $\rm Y_2O_3$ samples) and for 1 h (60–95 mol% $\rm Y_2O_3$ samples). When annealed at 1070° C for up to 3000 h, samples were placed in evacuated and sealed-off silica glass ampoules. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) was performed on a STA 449 F3 Jupiter instrument equipped with a W 3%Re - W 25% Re thermocouple in He (99.99999%, Russia) flow (30 ml. per. min.). Sample sizes were 98–103 mg, with the accuracy of an integrated balance equal to \pm 0.01 mg. The temperature adjustment accuracy was 0.3 K; the heating rate in the ranges where thermal events were observed was 5 K/min. The results of STA experiments were processed in the Proteus-6 program package. The precision in the phase transition enthalpy determination was \pm 18%. In visual polythermal analysis (VPTA), a 40–50 mg sample was placed in a tantalum crucible, which was then mounted on a W 5%Re - W 35% Re thermocouple. VPTA experiments were carried out under argon atmosphere (99.998%); the heating rate was 15–30 K/min. The references used were SrF₂ (T = 1750 K), Pt (T = 2033 K), Cr (T = 2180 K), and Al₂O₃ (T = 2326 K) [27,28]. X-ray powder diffraction patterns were recorded on a DRON-7 using CuK α radiation. Unit cell parameters were calculated in the PDWin-4 program. Microstructures were observed on polished samples using an AxioVert. A1MAT microscope (the AxioVision SE64 program). Microhardness was measured on an HMV-G21DT tester (NaCl reference, H = 791 HV) under the load 490.4 mN. The chemical composition of grains in samples and grain images were determined using a Jeol 6510 LV scanning electron microscope equipped with an energy-dispersive spectrometric unit [29,30]. #### 3. Results and discussion We are the first to plot the Y₂S₃-Y₂O₃ phase diagram (Fig. 1), to ### Download English Version: # https://daneshyari.com/en/article/7757663 Download Persian Version: https://daneshyari.com/article/7757663 <u>Daneshyari.com</u>