# The diversity of five metal-organic complexes based on an unsymmetrical biphenyl tetracarboxylate: Synthesis, structures, magnetism and luminescence 

<br>${ }^{\text {a }}$ Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, PR China<br>${ }^{\mathbf{b}}$ Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University, Taiyuan, Shanxi 030006, PR China<br>${ }^{\text {c }}$ Department of Chemistry, Changzhi University, Changzhi, Shanxi 046011, PR China

## ARTICLE INFO

## Keywords:

2,3,3', $4^{\prime}$-biphenyl tetracarboxylic acid ( $\alpha$ -
$\mathrm{H}_{4}$ bptc)
Co(II) complex
Zn (II) complex
Cd(II) complex
Magnetism
Fluorescence


#### Abstract

Careful investigation of the effects of metal ions and pH value resulted in five multi-dimensional metal-organic complexes, $\left[\mathrm{Co}_{5}\left(\mu_{3}-\mathrm{OH}\right)_{2}(\alpha \text {-bptc })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{\mathrm{n}}(\mathbf{1}),\left\{\left(\mathrm{H}_{3} \mathrm{O}\right)_{2}\left[\mathrm{Co}_{4}\left(\mu_{3}-\mathrm{O}\right)(\alpha \text {-bptc })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(2),\left\{\mathrm{K}_{2}\left[\mathrm{Zn}_{4}\left(\mu_{3^{-}}\right.\right.\right.$ $\left.\left.\mathrm{OH})_{2}(\alpha \text {-bptc })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\right\}_{\mathrm{n}}(3),\left[\mathrm{Zn}_{4}(\alpha-\text { bptc })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{\mathrm{n}}(4)$, and $\left\{\left[\mathrm{Cd}_{4}(\alpha-\text { bptc })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(5)\left(\alpha-\mathrm{H}_{4}\right.$ bptc $=$ $2,3,3^{\prime}, 4^{\prime}$-biphenyl tetracarboxylic acid). The complexes consisted of different highly connected secondary building units (SBUs) assembled via hydrothermal in situ routes. The pH value as well as the kinds of metal ions influenced the coordination modes of $\alpha-\mathrm{H}_{4} \mathrm{bptc}$ and also introduced the hydroxyl ligand at high pH value, resulting in the diversity of SBUs and dimensionality. Variable temperature magnetic measurements indicated the antiferromagnetic behavior in the $\mathrm{Co}_{5}$ core in $\mathbf{1}$, and the intra-chain ferrimagnetic behavior in complex 2. Moreover, the luminescent properties of the complexes 3-5 indicated the existence of intra-ligand charge transfer.


## 1. Introduction

In recent years, the rational design and construction of coordination polymers (CPs) composed of metal nodes and bridging linkers have attracted considerable attention due to their unique structures and potential applications in gas absorption and separation [1], luminescence [2], catalysis [3], sensors [4], delivery [5], and so on. Among various synthetic strategies, utilizing the diversity of polynuclear secondary building units (SBUs) is one of the most efficient ways to construct CPs rationally [6]. Suitable selection of SBUs not only has a significant impact on the topology and stability of CPs, but also provides functional properties that may contribute to the whole framework [7]. However, it is still a challenge to rationally synthesize CPs bearing desired SBUs, because even a minor change in reaction conditions will lead to completely different SBUs, such as coordination geometries of the central metals, configurations, and nature of the organic ligands [8], as well as some external factors, such as solvent, temperature, pH value, template effect, etc. [9].

The most important factor is the selection of organic ligands. Compared to common organic ligands, multifunctional carboxylic acid ligands which display multiple coordination sites could connect more than one metal to form prospective SBUs and sequentially expand the dimension of CPs [10]. Numerous structurally diverse polycarboxylate-based CPs have been constructed and their properties have been researched systematically, such as the CPs based on 1,4-benzenedicarboxylic acid, [11] benzene-1,3,5-tricarboxylic acid, [12] 3,4',5-biphenyltricarboxylic acid, [13] 3,3',5,5'-biphenyltetracarboxylic acid [14], 3, $3^{\prime}, 4,4^{\prime}$-biphenyltetracarboxylic acid [15] and so on. The specific forms of polycarboxylate ligands are highly dependent on the reaction conditions, which are affected by the degree of protonation of the carboxylic group and therefore their coordination mode [16]. Although a large number of polycarboxylate-based CPs have been synthesized, systematic investigations of physical or chemical stimuli effects on the structures of these CPs are rare [17]. Thus, much effort must be invested in further investigating the selfassembly processes.

[^0]We have been working on CPs constructed by aromatic polycarboxylate ligands [18]. In our previous work, we have shown the pH [19] and template effects [20] on the structures of a series of polycarbox-ylate-based coordination polymers prepared by the solvothermal method. In this work, we employed an unsymmetrical tetracarboxylate ligand $2,3,3^{\prime}, 4^{\prime}$-biphenyl tetracarboxylic acid ( $\alpha-\mathrm{H}_{4} \mathrm{bptc}$ ) as the organic linker, which has the following unique structural features: a) the coordination sites are more concentrated which can be beneficial to construct polynuclear SBUs. b) the two phenyl rings are severely twisted across the $\mathrm{C}-\mathrm{C}$ single bond, and the skew coordination orientations of the carboxylate groups provide the potential formation of a helix. [21a] Up to now, the complexes based on $\alpha-\mathrm{H}_{4}$ bptc ligands are less explored. [21-23]

In this paper, five new $\mathrm{CPs}\left[\mathrm{Co}_{5}\left(\mu_{3}-\mathrm{OH}\right)_{2}(\alpha-\mathrm{bptc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{\mathrm{n}}(\mathbf{1})$, $\left\{\left(\mathrm{H}_{3} \mathrm{O}\right)_{2}\left[\mathrm{Co}_{4}\left(\mu_{3}-\mathrm{O}\right)(\alpha \text {-bptc })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}} \quad(2),\left\{\mathrm{K}_{2}\left[\mathrm{Zn}_{4}\left(\mu_{3}-\mathrm{OH}\right)_{2}(\alpha-\right.\right.$ bptc $\left.\left.)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\right\}_{\mathrm{n}} \quad(3), \quad\left[\mathrm{Zn}_{4}(\alpha-\mathrm{bptc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{\mathrm{n}} \quad$ (4), and $\quad\left\{\left[\mathrm{Cd}_{4}(\alpha-\right.\right.$ bptc $\left.\left.)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(5)$ synthesized under hydrothermal conditions are investigated. Details of the synthesis and characterization of these complexes are described. Furthermore, the thermal stability, luminescent properties and magnetic properties of the complexes are systematically studied.

## 2. Experimental

All reagents and solvents were of standard commercial grade and directly used without further purification. Infrared (IR) spectra were obtained on a BRUKER TENSOR27 spectrometer with KBr disks. Samples for elemental analysis experiments were dried under vacuum, and the analyses were performed with a CHN-O-Rapid instrument. Powder X-ray diffraction (PXRD) data were collected on a Bruker D8 Advance X-ray diffractometer with $\mathrm{Cu} \mathrm{K} \alpha$ radiation ( $\lambda=1.5418 \AA$ ). Magnetic susceptibility data were obtained with SQUID magnetometer (Quantum MPMS) in the temperature range $2.0-300 \mathrm{~K}$ by using an applied field of 1000 Oe. Thermal analyses (TA) were performed on a Dupont thermal analyzer under $\mathrm{N}_{2}$ atmosphere with a heating rate of $20 \mathrm{~K} / \mathrm{min}$. Luminescence analyses were performed on a Varian Cary Eclipse luminescence spectrometer.

### 2.1. Synthesis of $\left[\mathrm{Co}_{5}\left(\mu_{3}-\mathrm{OH}\right)_{2}(\alpha-b p t c)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{n}(1)$

A mixture of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{mmol}, 0.0873 \mathrm{~g}), 2,2^{\prime}$-di(pyridin-2-yl)-[4, $5^{\prime}$-biisoindoline]-1, $1^{\prime}, 3,3^{\prime}$-tetraone (abbreviated as L1) ( $0.1 \mathrm{mmol}, 0.0448 \mathrm{~g}$ ), distilled water $(6 \mathrm{~mL})$ and $\mathrm{KOH}(0.7 \mathrm{~mL}$, $0.5 \mathrm{~mol} / \mathrm{L}$ ) was placed in a Teflon lined vessel ( 17 mL ) with constant stirring ( $\mathrm{pH}=7.0$ after stirring for 30 min ). The mixture was then sealed in a stainless steel container and heated under autogenous pressure at 433 K for 3 days. After cooling to room temperature, purple-red sheet-like crystals were obtained. Yield: 34\% based on L1. Elemental analysis (EA) (\%): calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{Co}_{5} \mathrm{O}_{24}$ (1): C 35.29 ; H 2.41. Found: C 35.51; H 2.31. IR (KBr, $v / \mathrm{cm}^{-1}$ ): 3404(s), 3130(m), 1589(vs), 1572(vs), 1543(s), 1475(vs), 1452(vs), 1425(m), 1402(s), 1373(m), 1218(s), 814(m), 783(m), 752(m), 466(m).

### 2.2. Synthesis of $\left\{\left(\mathrm{H}_{3} \mathrm{O}\right)_{2}\left[\mathrm{Co}_{4}\left(\mu_{3}-\mathrm{O}\right)(\alpha-b p t c)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ (2)

A mixture of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{mmol}, 0.0582 \mathrm{~g})$, $\mathrm{L} 1(0.1 \mathrm{mmol}$, $0.0448 \mathrm{~g})$, distilled water ( 8 mL ) and $\mathrm{KOH}(0.5 \mathrm{~mL}, 0.2 \mathrm{~mol} / \mathrm{L})$ was placed in a Teflon lined vessel ( 23 mL ) with constant stirring ( $\mathrm{pH}=5.0$ after stirring for 30 min ). The mixture was then sealed in a stainless steel container and heated under autogenous pressure at 433 K for 3 days. After cooling to room temperature, pink rod-like crystals were obtained. Yield: 35\% based on L1. EA (\%): calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Co}_{2} \mathrm{O}_{12}$ (2): C 37.23; H 2.73. Found: C 37.61; H 2.62. IR (KBr, $v / \mathrm{cm}^{-1}$ ): 3462(m), 3362(m), 3184(m), 1630(s), 1593(vs), 1553(vs), 1452(m), 1383(s), 1165(w), 821(w), 777(w), 748(w), 702(w), 685(w), 482(w).

### 2.3. Synthesis of $\left\{\mathrm{K}_{2}\left[\mathrm{Zn}_{4}\left(\mu_{3}-\mathrm{OH}\right)_{2}(\alpha-b p t c)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\right\}_{n}$ (3)

A mixture of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{mmol}, 0.0891 \mathrm{~g}), \mathrm{L} 1(0.1 \mathrm{mmol}$, $0.0448 \mathrm{~g})$, distilled water ( 6 mL ) and $\mathrm{KOH}(1.0 \mathrm{~mL}, 0.5 \mathrm{~mol} / \mathrm{L})$ was placed in a Teflon lined vessel $(17 \mathrm{~mL})$ with constant stirring ( $\mathrm{pH}=7.5$ after stirring for 30 min ). The mixture was then sealed in a stainless steel container and heated under autogenous pressure at 433 K for 3 days. After cooling to room temperature, colorless rod-like crystals were obtained. Yield: $48 \%$ based on L1. EA (\%): calcd for $\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{~K}_{2} \mathrm{Zn}_{4} \mathrm{O}_{21}$ (3): C 35.58; H 1.87. Found: C 35.89; H 1.97. IR (KBr, $v / \mathrm{cm}^{-1}$ ): 3503(s), 3336(m), 3034(m), 1633(s), 1575(vs), 1495(w), 1460(m), 1438(m), 1380(s), 1336(m), 1164(v), 935(v), 836(w), 778(m), 692(m), 507(vs), 453(vs).

### 2.4. Synthesis of $\left[\mathrm{Zn}_{4}(\alpha-b p t c)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{n}$ (4)

Complex 4 was prepared by the same procedure as that for $\mathbf{3}$ except for the consumption of $\mathrm{KOH}(0.5 \mathrm{~mL}, 0.5 \mathrm{~mol} / \mathrm{L}, \mathrm{pH}=6.5$ after stirring for 30 min ). After cooling to room temperature, colorless bulk crystals were obtained. Yield: $42 \%$ based on L1. EA (\%): calcd for $\mathrm{C}_{32} \mathrm{H}_{18} \mathrm{Zn}_{4} \mathrm{O}_{19}$ (4): C 39.70; H 1.46. Found: C 39.97; H 1.52. IR ( $\mathrm{KBr}, v / \mathrm{cm}^{-1}$ ): 3495(m), 3362(s), 1599(s), 1564(s), 1503(m), 1427(s), 1386(s), 1323(s), 1168(m), 1144(m), 937(w), 863(m), 839(m), 772(s), 705(m), 682(m), 505(m).

### 2.5. Synthesis of $\left\{\left[\mathrm{Cd}_{4}(\alpha-b p t c)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ (5)

A mixture of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 0.0309 \mathrm{~g}), \mathrm{L} 1(0.1 \mathrm{mmol}$, $0.0448 \mathrm{~g})$, distilled water ( 4 mL ) and $\mathrm{KOH}(0.2 \mathrm{~mL}, 0.5 \mathrm{~mol} / \mathrm{L})$ was placed in a Teflon lined vessel $(17 \mathrm{~mL})$ with constant stirring ( $\mathrm{pH}=7.0$ after stirring for 30 min ). The mixture was then sealed in a stainless steel container and heated under autogenous pressure at 433 K for 3 days. After cooling to room temperature, colorless bulk crystals were obtained. Yield: 45\% based on L1. EA (\%): calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{Cd}_{4} \mathrm{O}_{25}$ (5): C 30.40; H 2.39. Found: C 30.56; H 2.35. IR (KBr, $v / \mathrm{cm}^{-1}$ ): 3383(m), 3101(w), 2924(w), 1599(s), 1545(s), 1420(s), 1387(s), 1223(m), 1074(m), 824(m).

### 2.6. X-ray crystallography

Single-crystal X-ray diffraction data for complexes 1, 2 and 5 were collected at 100 (2) K in the Beijing Synchrotron Radiation Facility (BSRF) beamline 3W1A, which was equipped with a MARCCD-165 detector $(\lambda=0.7200 \AA$ ) with the storage ring working at 2.5 GeV . Data were collected by the MARCCD diffractometer and processed using HKL 2000. [24] Single-crystal X-ray diffraction patterns for 3 and 4 were measured on a Bruker Smart Apex II diffractometer with a CCD area detector and Mo-Ka radiation $(\lambda=0.71073 \AA)$ at room temperature. Multi-scan program SADABS was used for absorption correction. [25] The structures were solved by direct methods and refined by the full-matrix least squares on $F^{2}$ using the SHELXS-2014. [26] All the non-H atoms were refined anisotropically. Hydrogen atoms attached to C atoms were placed geometrically and refined using a riding model approximation, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$. Hydrogen atoms in water and hydroxyls were located from difference Fourier maps and refined using their global Uiso value with $\mathrm{O}-\mathrm{H}=0.82 \AA$. The topological analyses were performed on the TOPOS program [27]. For complex 2, the PLATON/SQUEEZE [28] program was used to remove the contributions of all disordered solvent molecules and anions. The full details of the solvent and anions removed are included in the PLATON/ SQUEEZE details section of the CIF. There is a total potential solvent accessible void of $1031.4 \AA^{3}$ with $27.2 \%$ of per unit cell volume. EA and TGA (Fig. S7) results matched with the formula $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Co}_{2} \mathrm{O}_{12}$, corresponding to $\left\{\left(\mathrm{H}_{3} \mathrm{O}\right)_{2}\left[\mathrm{Co}_{4}\left(\mu_{3}-\mathrm{O}\right)(\alpha \text {-bptc })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}$.

A summary of the crystallographic data as well as the data collection and refinement parameters for compounds $\mathbf{1 - 5}$ are provided

# https://daneshyari.com/en/article/7757895 

Download Persian Version:

## https://daneshyari.com/article/7757895

## Daneshyari.com


[^0]:    * Corresponding author.
    ${ }^{* *}$ Corresponding author at: Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, PR China.

    E-mail addresses: luliping@sxu.edu.cn (L.-p. Lu), miaoli@sxu.edu.cn (M.-l. Zhu).
    ${ }^{1}$ These authors contributed equally.
    http://dx.doi.org/10.1016/j.jssc.2017.10.035
    Received 6 September 2017; Received in revised form 17 October 2017; Accepted 26 October 2017
    Available online 27 October 2017
    0022-4596/ © 2017 Elsevier Inc. All rights reserved.

