Author's Accepted Manuscript

Critical phenomena in La_{0.6}Pr_{0.1}Sr_{0.3}MnO₃ perovskite manganese oxide

R. Cherif, E.K. Hlil, M. Ellouze, F. Elhalouani, S. Obbade

www.elsevier.com/locate/jssc

PII: S0022-4596(15)00174-7

DOI: http://dx.doi.org/10.1016/j.jssc.2015.04.039

Reference: YJSSC18892

To appear in: Journal of Solid State Chemistry

Received date: 26 February 2015 Revised date: 25 April 2015 Accepted date: 27 April 2015

Cite this article as: R. Cherif, E.K. Hlil, M. Ellouze, F. Elhalouani, S. Obbade, Critical phenomena in La_{0.6}Pr_{0.1}Sr_{0.3}MnO₃ perovskite manganese oxide, *Journal of Solid State Chemistry*, http://dx.doi.org/10.1016/j.jssc.2015.04.039

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Critical phenomena in La_{0.6}Pr_{0.1}Sr_{0.3}MnO₃ perovskite manganese oxide

R. Cherif^{1,*}, E. K. Hlil², M. Ellouze¹, F. Elhalouani³ and S. Obbade⁴

¹Sfax University, Faculty of Sciences of Sfax, B. P. 1171 – 3000 Sfax, TUNISIA

² Institut Neél, CNRS et Université Joseph Fourrier, BP 166, F -38042 Grenoble Cedex 9, FRANCE

³Sfax University, National Engineering School of Sfax, LASEM, B. P. W – 3038 Sfax, TUNISIA

⁴LEPMI UMR 5279, CNRS - Grenoble INP - Université de Savoie - Université Joseph Fourier, 1130 rue de la Piscine, BP 75, 38402 Saint-Martin d'Hères Cedex, FRANCE Abstract

We report a study of the critical phenomena of perovskite-manganite compound La_{0.6}Pr_{0.1}Sr_{0.3}MnO₃ around the Curie temperature. Experimental results based on magnetic measurements using Banerjee criterion reveals that the sample exhibits a second-order paramagnetic-ferromagnetic transition. The critical behavior analysis and Kouvel-Fisher method suggests that the critical phenomena around the critical point can be correctly described by the 3D-Heisenberg model. Critical exponents were estimated and found $\beta = 0.354 \pm 0.009$ and $\gamma = 1.264 \pm 0.035$ at $T_C = 325.5 \pm 0.443$ K. The critical exponent δ is determined separately from the isothermal magnetization at T_C and evaluated to $\delta = 4.934 \pm 0.0004$. These critical exponents obey the Widom scaling relation $\delta = 1 + \gamma/\beta$. Based on the critical exponents, the magnetization-field-temperature (*M-H-T*) data around T_C collapses into two curves obeying the single scaling equation $M(H, \varepsilon) = |\varepsilon|^{\beta} f^{\pm} \left(\frac{H}{|\varepsilon|^{\beta+\gamma}}\right)$ where $\varepsilon = (T - T_C)/T_C$ is the reduced temperature.

Download English Version:

https://daneshyari.com/en/article/7758490

Download Persian Version:

https://daneshyari.com/article/7758490

<u>Daneshyari.com</u>