

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Structure and ionic conductivity of well-aligned polycrystalline sodium titanogallate grown by reactive diffusion

Ryo Hasegawa^a, Momoko Okabe^a, Toru Asaka^a, Nobuo Ishizawa^b, Koichiro Fukuda^{a,*}

^a Department o f Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan ^b Advanced Ceramics Research Center, Nagoya Institute of Technology, Tajimi 507-0071, Japan

ARTICLE INFO

Article history: Received 7 March 2015 Received in revised form 9 May 2015 Accepted 1 June 2015 Available online 15 June 2015

Keywords: Grain-aligned polycrystals Sodium titanogallate Ionic conductor Reactive diffusion Crystalline orientation

ABSTRACT

We prepared the *b*-axis-oriented polycrystalline Na_{0.85}Ti_{0.51}Ga_{4.37}O₈ (NTGO) embedded in Ga₂O₃-doped Na₂Ti₄O₉ matrix using the reactive diffusion technique. When the sandwich-type Ga₂TiO₅/NaGaO₂/Ga₂TiO₅ diffusion couple was heated at 1323 K for 24 h, the NTGO polycrystal was readily formed in the presence of a liquid phase. The resulting polycrystalline material was characterized by X-ray diffractometry, electron microscopy and impedance spectroscopy. We mechanically processed the annealed diffusion couple and obtained the thin-plate electrolyte consisting mostly of the grain-aligned NTGO polycrystal. The ionic conductivity (σ) of the electrolyte along the common *b*-axis direction steadily increased from 1.3 × 10⁻⁴ to 7.3 × 10⁻³ S/cm as the temperature increased from 573 to 1073 K. There was a slope change at ca. 792 K for the Arrhenius plot of σ ; the activation energies were 0.39 eV above this temperature and 0.57 eV below it. The NTGO showed the crystal structure (space group *C*2/*m*) with substantial positional disordering of one of the two Ga sites. The Na⁺ ions occupied ca. 43% of the Wyckoff position *4i* site, the deficiency of which would contribute to the relatively high ionic conductivity along the *b*-axis. The reactive diffusion could be widely applicable as the novel technique to the preparation of grain-aligned ceramics of multi-component systems.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Sodium titanogallates with one-dimensional tunnel structures are interesting materials for their potential application as solid electrolytes because of the availability for fast ion transport within the tunnels [1–9]. The sodium-ion conductor with the general formula $Na_{1-X+3Y}Ga_{5-X-Y}Ti_XO_8$, which is equivalent to $Na_{x+3y}Ti_{1-x}Ga_{4+x-y}O_8$ (NTGO), has been for the first time reported by Chandrashekar et al. [1] They have grown the single crystals of Na_{0.7}Ti_{0.3}Ga_{4.7}O₈ (x=0.7 and y=0) to demonstrate the anisotropy of ionic conduction. The framework of the crystal structure (space group C2/m, a=1.2363 nm, b=0.3002 nm, c = 0.9362 nm and $\beta = 122.09^{\circ}$) is closely related to the tunneled structure of Ga₄TiO₈ (x=y=0) [7–10]. The conductivity (σ) of Na⁺ ions within the tunnels has been much higher along the tunnel direction, which is parallel to the *b*-axis, than perpendicular to this direction. At 573 K, the σ -value of the former direction was 1×10^{-2} S/cm, which is ca. 2000 times higher than that of the latter. The activation energy of conduction along the *b*-axis was 0.25 eV (temperature range 298-723 K). Edwards et al. [8] have

examined the temperature dependence of σ for the randomly grain-oriented polycrystalline Na_{0.7}Ti_{0.3}Ga_{4.7}O₈. The σ -value increased steadily from ca. 1×10^{-7} to 1×10^{-3} S/cm as the temperature increases from 573 to 1273 K. At 573 K, the σ -value was lower by a factor of 10^5 than that along the *b*-axis of the single crystal. Thus, the *b*-axis-oriented crystallization would be indispensable for the NTGO polycrystalline materials for the sake of high ionic conductivity.

Sintered polycrystals synthesized by normal sintering methods generally possess a randomly oriented grain structure and isotropic mechanical (e.g., bending strength and fracture toughness) and physical (e.g., thermoelectric, piezoelectric, pyroelectric, and magnetic) properties. In recent years, a facile and novel technique utilizing reactive diffusion has made it possible to produce the well-aligned polycrystals of lanthanum silicate oxyapatite (LSO) [11–15]. Because LSO is characterized by the much higher conductivity of oxide ions parallel to the *c*-axis than perpendicular to this direction [16–18], the grain-aligned polycrystalline materials have shown relatively high oxide-ion conductivity along the common *c*-axis.

In the present study, we focused on the preparation of highly *b*-axis-oriented polycrystalline NTGO because of the much higher σ -value along the grain-alignment direction than perpendicular to this direction. Actually, we successfully prepared the grain-aligned

^{*} Corresponding author. E-mail address: fukuda.koichiro@nitech.ac.jp (K. Fukuda).

polycrystalline NTGO embedded in Ga₂O₃-doped Na₂Ti₄O₉ matrix by the reactive diffusion technique. The chemical composition as well as the crystal structure of NTGO were determined by X-ray diffractometry. The Na-deficiency in crystal structure probably contributed to the relatively high ionic conductivity parallel to the *b*-axis.

2. Experimental

2.1. Materials

Two kinds of powder specimens of Ga_2TiO_5 and $NaGaO_2$ were prepared from reagent-grade chemicals of Ga_2O_3 (99.99%, Kishida Chemicals Co. Ltd., Osaka, Japan), TiO₂ (99.5%, Kishida Chemical Co. Ltd., Osaka, Japan) and Na_2CO_3 (99.5%, Kishida Chemical Co. Ltd., Osaka, Japan). Individual well-mixed chemicals with the desired chemical compositions were heated at 1673 K for 8 h, followed by quenching in air. The reaction products were slightly sintered polycrystalline materials. They were ground to obtain fine powder specimens.

We prepared sandwich-type diffusion couples of Ga₂TiO₅/NaGaO₂/Ga₂TiO₅. Each of the couples was made up of two Ga₂TiO₅ pellets (0.200 g each) with the size of ϕ 13 mm × 0.30 mm and one NaGaO₂ pellet (0.250 g) with the size of ϕ 13 mm × 0.48 mm, hence the bulk chemical composition was 20.1 mol% Na₂O, 29.9 mol% TiO₂ and 50.0 mol% Ga₂O₃. After the preliminary heating experiment at 1423–1223 K, they were heated at the optimum temperature of 1323 K for 24 h, and then slowly cooled to ambient temperature at ~300 K/h.

2.2. Characterization

We cut the annealed couples using a diamond saw and exposed the sections, the surfaces of which were perpendicular to or parallel to the former $Ga_2TiO_5/NaGaO_2$ interfacial contact boundaries. These cross-sections were subsequently ground with 800-grid SiC paper and finally polished with 1-µm diamond paste. The microtexture on the polished surface was observed using a scanning electron microscope (SEM; JSM-6010LA, JEOL Ltd., Tokyo, Japan).

X-ray diffraction (XRD) intensities were collected on the polished section surface using a powder diffractometer (X'Pert PRO Alpha-1, PANalytical B.V., Almelo, The Netherlands) equipped with an incident-beam Ge(111) Johansson monochromator to obtain CuK α_1 radiation and a high-speed detector. We used a programmable divergence slit to keep a constant length of 5 mm for the illuminated specimen surface. The beam width was 5 mm, hence the analyzed surface area was ca. 25 mm² regardless of the 2 θ value with 10.0° $\leq 2\theta \leq 90.0°$. We used the Lotgering method [19] to estimate the texture fraction of the NTGO {0k0} planes from the XRD pattern. The Lotgering factor f_{0k0} is defined as the fraction of area textured with the crystallographic plane of interest using the formula

 $f_{0k0} = (P_{0k0} - P_0)/(1 - P_0)$ where $P_{0k0} = (\Sigma I_{0k0})/(\Sigma I_{hkl})$ and $P_0 = (\Sigma I_{0k0}^0)/(\Sigma I_{hkl}^0)$

where I_{hkl} and I_{hkl}^{0} are the integrated intensities of *hkl* reflections for, respectively, the textured specimen and the randomly grain oriented one. We examined the whole XRD pattern by the Le Bail method [20] and extracted the I_{hkl} -values using a computer program RIETAN-FP [21]. The I_{hkl}^{0} -values were generated from calculation, using the same computer program, for the NTGO polycrystal with random grain orientation.

We ground one of the annealed sandwich-type diffusion

couples (ca. 1.3 mm in thickness) using 800-grid SiC paper and eventually polished using 1- μ m diamond paste to obtain the thinplate electrolyte. Electrodes were prepared by coating opposite plate faces with a platinum paste and subsequent heating at 1073 K to decompose the paste and harden the Pt residue. We collected the impedance spectroscopy data in the range of 4 Hz– 5 MHz during the heating process from 573 K to 1073 K in air using an impedance analyzer (model 3570, HIOKI E.E. Co., Nagano, Japan). A nonlinear least square fitting method using a ZView software was employed to analyze the equivalent circuits [22].

We picked up a needle-like microcrystal (approximately $45 \,\mu m \times 10 \,\mu m \times 5 \,\mu m$) of NTGO from the crushed thin-plate electrolyte and mounted it on the end of a soda glass capillary. Single-crystal XRD data were obtained on a Bruker Smart Apex II diffractometer using MoKa radiation (50 kV and 35 mA). We refined the unit-cell parameters and extracted the observed structure factors using a program package Apex2-W2K/NT [23]. The initial structural model was derived by the charge flipping method [24] on a computer program [ANA2006 [25], and the structural parameters were refined subsequently by the program. We standardized the structural data according to the formulated rules by Parthé and Gelato [26] using a computer program STRUCTURE TIDY [27]. For the evaluation of the anharmonicity, the Gram-Charlier expansion up to the third-rank tensor was applied to the atomic displacement parameters (ADPs) of Na site after the refinement of the harmonic displacement model [28]. We validated the significance of the final structural model by the difference Fourier maps that were obtained using the JANA2006 program. The crystal structure model was visualized with a computer program VESTA [29]. The data collection and refinement parameters are summarized in Table 1.

The powder specimen of the crushed thin-plate electrolyte was deposited with ethyl alcohol on a copper grid coated with holy

Table 1

Summary of data collection and refinement parameters for $Na_{0.85}Ti_{0.51}Ga_{4.37}O_8$ (NTGO).

Chemical composition Space group a/nm b/nm c/nm β/deg V/nm^3 Z Formula weight D_x/Mgm^{-3} Crystal color Crystal form Crystal size/µm μ/mm^{-1}	$\begin{array}{c} Na_{0.850(14)}Ti_{0.511(8)}Ga_{4.369(13)}O_8\\ C2/m\ (No.12)\\ 1.23463(3)\\ 0.29855(1)\\ 0.94088(2)\\ 122.566(1)\\ 0.292279(14)\\ 2\\ 476.59\\ 5.4136(3)\\ Clear\\ Rectangular\\ Approximately\ 45\times10\times5\\ 20.623\\ \end{array}$
Diffractometer Radation type Wavelength/nm Temperature/K θ_{max}/deg Collection range No. of measured reflections No. of unique reflections	Bruker Smart ApexII Mo $K\alpha$ 0.071073 298 29.985 $-16 \le h \le 15$ $-4 \le k \le 4$ $-13 \le l \le 13$ 5969 503
No. of observed reflections $[F^2 > 3\sigma(F^2)]$ R_{int}	440 0.0193
R wR S No. of parameters $\Delta \rho_{max}/1000 \text{ nm}^{-3}$ $\Delta \rho_{min}/1000 \text{ nm}^{-3}$	0.0205 0.0282 1.97 57 0.56 - 0.66

Download English Version:

https://daneshyari.com/en/article/7758615

Download Persian Version:

https://daneshyari.com/article/7758615

Daneshyari.com