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a b s t r a c t

The transition metal fluorides have been extensively investigated recently as the electrode materials
with high working voltage and large capacity. The structural, electronic and magnetic properties of MoF3
are studied by the first-principles calculations within both the generalized gradient approximation
(GGA) and GGAþU frameworks. Our results show that the antiferromagnetic configuration of MoF3 is
more stable than the ferromagnetic one, which is consistent with experimental results. The analysis of
the electronic density of states shows that MoF3 is a Mott–Hubbard insulator with a d–d type band gap,
which is similar to the case of FeF3. Moreover, small spin polarizations were found on the sites of fluorine
ions, which accords with a fluorine-mediated superexchange mechanism for the Mo–Mo magnetic
interaction.

& 2015 Elsevier Inc. All rights reserved.

1. Introduction

Lithium-ion batteries (LIBs) have undergone widely scientific
research and shown successful commercial applications in a
variety of portable electronic devices and electric vehicles [1,2].
At present, LiCoO2 is utilized as a cathode in most of the
commercial lithium ion batteries [3,4], however, the active rever-
sible specific capacity of LiCoO2 is below 150 mA h g�1 which
cannot well meet the requirement of the power lithium ion
battery. To satisfy the demand for the electric vehicles, much
attention has been paid to the development of new systems, in
particular to those with high energy density and discharge voltage
which can store more energy at reduced weight [5–11]. In a way,
the choice of cathode materials is very important. Good cathode
material can accommodate a large amount of Li-ions, which can
supply high capacity. Recently, as a special class of promising
cathode materials, transition metal fluorides have attracted great
interest due to high ionicity which can provide high operating
voltage in Li-ion batteries [12–15]. Metal fluorides enable the
highest specific capacity via the large multi-electron reversible

redox conversion process through the following reaction scheme:

xLiþ þxe� þMoFx2xLiFþMo

However, the highly ionic nature of M–F bond leads to an insulating
character of MF with poor electronic conductivity and limits their
discharge voltage. For example, the discharge capacity of FeF3
(80mA h g�1) first reported by Arai et al. [16] is far below the
theoretical 1e� transfer reaction capacity of the Fe3þ/Fe2þcouple
(237mA h g�1). Fortunately, electronic limitations are no longer an
insurmountable issue in design of high-performance electrode mate-
rial. Low conductivity can be improved through various materials
processing approaches, including the use of carbon coatings, mechan-
ical grinding, mixing [17], and low-temperature synthesis routes [14] to
obtain tailored particles. Among transition metal fluorides, FeF3, CuF2
[18] are widely investigated, however, little has been done on MoF3. As
is well known, molybdenum is amulti-valence-electron element which
could enable a six-electron reversible process resulting in specific high
capacities. Therefore, element Mo has been very active in the field of
lithium ion batteries. Molybdenum disulfide and molybdenum oxide
are well-known lithium insertion compounds and have been much
investigated [19,20]. Moreover, experiments [21] have shown that
MoF3 and FeF3 have the same crystal structure and magnetic structure.
The magnetic ground state of MoF3 or FeF3 is antiferromagnetism
(AFM), in which each metal atom is antiferromagnetically coupled
through the intervening fluorine atoms to each of its six nearest
neighbors. Consequently, it is of great interest to explore and under-
stand the intrinsic structural properties and electronic characteristics of
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the MoF3 material. In this paper, we focus on the study of ground state
properties of MoF3, by analyzing the structural, magnetic, and electro-
nic properties from first-principles calculations.

The present calculations have been performed by using the
Vienna ab initio simulation package (VASP) [22,23], which is based
on the density functional theory, the plane-wave basis, and the
projector augmented wave (PAW) representation [24]. The exchange
correlation potentials are approximated by the generalized gradient-
corrected approximation (GGA) [25]. To address the on-site Coulomb
interactions in the localized d electrons of Mo ions, the GGAþU
method with an additional Hubbard-type U term [26] was employed.
Here, an Ueff¼U� J¼2 eV is used in this paper. In the study of
magnetism of MoO2,Wang et al. [27] used a range of values for Ueff

between 1 and �1 eV, citing weak correlations in Mo. Jain and
Hautier [28] more accurately predicted the formation enthalpies of
49 ternary oxides by mixing GGA and GGAþU energies, they arrived
at a value of Ueff¼3.5 for Mo. Saitoh et al. [29] suggested a value of
Ueff¼1.0 for Mo based on a comparison of the computed band
structure with valence-band photoemission spectra of single crystals
of Sr2FeMoO6. We, therefore, take an average value of Ueff¼2.0 eV.
The wave functions were expanded in plane-wave basis up to a
kinetic energy cutoff of 500 eV. Brillouin-zone integrations were
performed by using special k-point sampling of the Monkhorst–Pack

scheme [30] with a 4�4�2 grid. The convergence of total energy
with respect to the kinetic energy cutoff and the k-point sampling
has been examined. The atomic geometry of MoF3 was fully relaxed
until the Hellmann–Feynman forces on all atoms were less than
0.01 eV Å�1. The unit cell adopted for the present calculation
contains 6 formula unit of MoF3, which is 24 atom per unit cell (18
fluorine atoms and 6 Mo atoms).

Several experimental studies [21,31] have shown that MoF3 has
a bimolecular rhombohedral unit cell of space group R3c. The
hexagonal representation of the lattice, as shown in Fig. 1, is
related to a collapsed ReO3 perovskite structure. The Mo–F–Mo
bond angle is deviated from the ideal 1801 (experimental value of
141.021 [31]). MoF3 also exhibits a layered structure and comprises
corner-sharing MoF6/2 octahedra. In Table 1, we have presented
the calculated lattice parameters, the bond length of Mo–F, the
bond angle of Mo–F–Mo and the spin magnetic moments of Mo
and F ions in MoF3. Both of the GGA and GGAþU calculations
predict that the AFM configuration is more favorable. The differ-
ences of cohesive energies (per molecular formula) between
antiferromagnetic and ferromagnetic configurations are 0.476 eV
for GGA and 0.234 eV for GGAþU calculations, respectively. Their
lattice parameters calculated within the GGAþU scheme are larger
than those calculated within the GGA.

Fig. 1. The crystal structure of MoF3 in the hexagonal structure. The Mo and F atoms are denoted by larger and smaller balls, respectively. Mo–F6 octahedra are also shown in
the right panel.

Table 1
The optimized lattice parameters, the cohesive energies Ec (in eV/molecular formula), the Mo–F bond lengths, the bond angles of Mo–F–Mo, and the magnetic moments of
Mo and F ions of MoF3 for the FM and AFM configurations calculated by both the GGA and GGAþU schemes, together with the experimental data [31].

Method a (Å) c (Å) EC (eV) RMo–F (error) (Å) ∠Mo–F–Mo (1) m (Mo) (μB) m (F) (μB)

AFM [31] 5.213 14.41 – 2.04 141.02
FM: GGA 5.276 14.492 152.098 2.07 (1.4%) 139.37 2.689 0.054
FM: GGAþU 5.410 14.782 145.350 2.08 (1.9%) 139.80 3.053 0.021
AFM: GGA 5.388 14.395 152.574 2.06 (0.9%) 145.10 2.513 0
AFM: GGAþU 5.386 14.557 145.584 2.08 (1.9%) 143.16 2.721 0
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