
ELSEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Bismuth(III) dialkyldithiophosphates: Facile single source precursors for the preparation of bismuth sulfide nanorods and bismuth phosphate thin films

Jasmine B. Biswal^a, Shivram S. Garje^{a,*}, Jitendra Nuwad^b, C.G.S. Pillai^b

- ^a Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098, India
- ^b Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

ARTICLE INFO

Article history: Received 8 April 2013 Received in revised form 30 May 2013 Accepted 9 June 2013 Available online 20 June 2013

Keywords: Dialkyl dithiophosphate Bismuth phosphate Bismuth sulfide Nanorods Thin films

ABSTRACT

Two different phase pure materials (Bi_2S_3) and $Bi_2P_4O_{13}$ have been prepared under different conditions using the same single source precursors. Solvothermal decomposition of the complexes, $Bi\{S_2P(OR)_2\}_3$ [where, R=Methyl (Me) (1), Ethyl (Et) (2), n-Propyl (Pr^n) (3) and iso-Propyl (Pr^i) (4)] in ethylene glycol gave orthorhombic bismuth sulfide nanorods, whereas aerosol assisted chemical vapor deposition (AACVD) of the same precursors deposited monoclinic bismuth tetraphosphate ($Bi_2P_4O_{13}$) thin films on glass substrates. Surface study of the thin films using SEM illustrated the formation of variety of nanoscale morphologies (spherical-, wire-, pendent-, doughnut- and flower-like) at different temperatures. AFM studies were carried out to evaluate quality of the films in terms of uniformity and roughness. Thin films of average roughness as low as 1.4 nm were deposited using these precursors. Photoluminescence studies of $Bi_2P_4O_{13}$ thin films were also carried out.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Bismuth phosphate and bismuth sulfide have attracted considerable interest due to their applications in various fields. The former acts as a catalyst in many reactions [1–3] and is used to separate radioactive elements from different matrices [4]. Bismuth phosphates are also useful in ion-sensors [5] and in improving electrical properties of phosphate glasses which are of technological interest as electronic and ionic conductors [6,7]. Recently, the luminescent studies of bismuth phosphate nanostructures revealed their potential applications in optoelectronics [8].

 $\rm Bi_2S_3$ has narrow band gap of 1.1–1.5 eV [9,10]. Due its thermoelectric and photovoltaic properties, it is suitable for applications in thermoelectric [11,12] and photoelectrochemical devices [13,14]. A large number of methods such as solvothermal [15], solventless thermolysis [16], hydrothermal [17], single source precursor [18,19], etc. have been employed for the synthesis of $\rm Bi_2S_3$ nanostructures like nano-rods [15–19], nanowires [16,17], nano-flowers [19], etc. However, the preparation of bismuth phosphate nanostructures has not been explored much. The synthesis of $\rm BiPO_4$ nanostructures have been reported by single source precursor route [20], the solvothermal method [8,21], the

polyol method [22], etc. To the best of authors' knowledge there is no report on the preparation of Bi₂P₄O₁₃ nanostructures or thin films. Herein we report the use of single source precursors, Bi{S₂P $(OR)_2$ ₃, [where, R = Methyl (Me) (1), Ethyl (Et) (2), n-Propyl (Prⁿ) (3) and iso-Propyl (Pr^i) (4)] for the preparation of orthorhombic Bi₂S₃ nanorods by solvothermal decomposition route and the deposition of uniform monoclinic Bi₂P₄O₁₃ thin films by aerosol assisted chemical vapor deposition (AACVD) technique. The use of single-source precursors for the preparation of two different materials have been demonstrated by O'Brien et al. [23] earlier. Just by changing decomposition temperature, they have successfully prepared nickel selenide and nickel phosphide thin films using imido-bis-(diisopropylthioselenophosphinate) nickel(II), Ni[ⁱPr₂P(S)NP(Se)ⁱPr₂]₂ as single source precursor. Similarly, Liu et al. [20], have used $[Bi\{Se_2P(OPr^i)_2\}_3]$ for the preparation of both BiPO₄ nanowires and Bi₂Se₃ nanoplates.

2. Experimental

2.1. Materials and methods

All the solvents used were of analytical grade and the reactions were carried out under oxygen free nitrogen atmosphere. The complexes, $Bi\{S_2P(OR)_2\}_3$ were synthesized by modification of literature methods ($R=Me\ [24]$, Et [24,25], $Pr^n\ [25]$, $Pr^i\ [24,25]$). Infrared spectra of the complexes were recorded on Perkin Elmer

^{*} Corresponding author. Fax: +91 22 2652 85 47. *E-mail addresses*: ssgarje@chem.mu.ac.in, ssgarje@gmail.com, ssgarje@yahoo.com (S.S. Garje).

Spectrum One FTIR spectrometer in the range of 400–4000 cm⁻¹. ¹H, ¹³C(¹H) and ³¹P(¹H) NMR spectra of the complexes were recorded in CDCl₃ on Bruker Avance II 300 MHz NMR spectrometer operating at 300, 75.47 and 121.50 MHz, respectively. The chemical shifts were referred to tetramethyl silane (TMS) as an internal standard. Triphenyl phosphine was used as a standard for ³¹P{¹H} NMR. The thermogravimetric analysis (TGA) of these precursors were performed on Perkin Elmer instrument, Pyris Diamond TG/DTA model with heating rate of 10 °C min⁻¹ under nitrogen atmosphere. X-ray diffraction patterns of the materials were recorded using CuKα radiation on a Philips X'pert PRO PANalytical X-ray diffractometer with an accelerating voltage of 45 kV at a scanning rate of 0.05°/s. Scanning electron microscopy (SEM) images were recorded on ULTRA 55 FESEM of Zeiss and Seron Inc. AIS2100 instruments. Energy dispersive X-ray analysis (EDAX) measurements were carried out on Oxford Inca instrument. The surface morphology and roughness of thin films were studied using Scanning probe microscope (SPM-Solver P47, NT-MDT, Russia). The measurements were carried out in contact mode. Silicon nitride cantilevers having force constant of 3 N/m were employed for measurement. The transmission electron microscopy (TEM) images were taken on a PHILIPS, CM 200 microscope with an operating voltage of 200 kV. The absorption spectra of the materials were recorded on a UV-2450 Shimadzu spectrophotometer. The photoluminescence spectra were taken on a Perkin Elmer LS 55 Fluorescence spectrometer. Raman spectra were recorded on RENISHAW inVia Raman Microscope using 514 nm Argon ion laser in the range of 100–1200 cm⁻¹.

2.2. Synthesis of precursors

2.2.1. $Bi\{S_2P(OMe)_2\}_3$ (1)

To a tetrahydrofuran (THF) solution of BiCl₃ (0.63 g, 2.00 mmol), 1.56 g (3.00 mmol) of Pb{S₂P(OMe)₂}₂ dissolved in 20 ml THF was added with constant stirring and the reaction mixture was stirred at room temperature for 10 h. The precipitated lead chloride was filtered through a G-4 sintered funnel. The filtrate was evaporated under vacuum to yield a bright yellow crystalline solid (yield: 1.34 g, 98.5%), mp 56 °C. Anal. Calcd. for C₆H₁₈BiO₆P₃S₆: C, 10.59; H, 2.66; Bi, 30.71; S, 28.27%. Found: C, 10.64; H, 2.58; Bi, 31.16; S, 27.97%. IR (in Nujol) cm⁻¹: 1177 (ν_{C-O}), 1029 (ν_{P-OR}), 640 (ν_{asym} PS₂), 517 (ν_{sym} PS₂). ¹H NMR (CDCl₃) δ : 3.83 (d, ³J(³¹P-O-C-¹H)=15.62 Hz, -OCH₃), ¹³C{¹H} NMR (CDCl₃) δ : 54.24 (d, ²J(³¹P-O-¹³C)=5.51 Hz, -OCH₃), ³¹P{¹H} NMR (CDCl₃) δ : 101.6 ppm.

Similarly, precursors $\mathbf{2}$ — $\mathbf{4}$ were synthesized. Their details are given below.

2.2.2. $Bi\{S_2P(OEt)_2\}_3$ (2)

Recrystallized from dichloromethane–hexane as bright yellow crystalline solid (yield: 0.98 g, 91.5%), mp 55 °C. Anal. Calcd. for C₁₂H₃₀BiO₆P₃S₆: C, 18.85; H, 3.95; Bi, 27.33; S, 25.16%. Found: C, 18.53; H, 3.84; Bi, 27.65; S, 24.98%. IR (in Nujol) cm⁻¹: 1161 (ν_{C-O}), 1008 (ν_{P-OR}), 612 (ν_{asym} PS₂), 517 (ν_{sym} PS₂). ¹H NMR (CDCl₃) δ : 1.38–1.43 (t, ³J(¹H–C–C–¹H)=7.20 Hz, –CH₃), 4.18–4.28 (dq, ³J(³¹P–O–C–¹H)=9.90 Hz; ³J(¹H–C–C–¹H)=7.20 Hz, –OCH₂), ¹³C{¹H} NMR (CDCl₃) δ : 15.93 (d, ³J(³¹P–O–C–¹³C)=8.68 Hz, –CH₃), 64.23 (d, ²J(³¹P–O–¹³C)=5.51 Hz,–O–CH₂–), ³¹P{¹H} NMR (CDCl₃) δ : 96.3 ppm.

2.2.3. $Bi\{S_2P(OPr^n)_2\}_3$ (3)

Recrystallized from dichloromethane–hexane as bright yellow crystalline and low melting solid (yield: 2.87 g, 96.7%). Anal. Calcd. for C₁₈H₄₂BiO₆P₃S₆: C, 25.47; H, 4.98; Bi, 24.62; S, 22.66%. Found: C, 25.66; H, 5.05; Bi, 25.05; S, 22.14%. IR (in Nujol) cm⁻¹: 1150 (ν_{C-O}), 988 (ν_{P-OR}), 622 (ν_{asym} PS₂), 531 (ν_{sym} PS₂). ¹H NMR(CDCl₃) δ: 0.94–

1.00 (t, 7.50 Hz, $-\text{CH}_3$), 1.74–1.81 (sextet, $-\text{CH}_2$), 4.08–4.16 (dt, $^3\text{J}(^{31}\text{P-O-C-}^1\text{H}) = 9.30$ Hz; $^3\text{J}(^1\text{H-C-C-}^1\text{H}) = 6.60$ Hz, $-\text{OCH}_2$), $^{13}\text{C}(^1\text{H})$ NMR (CDCl₃) δ : 10.16 (s, $-\text{CH}_3$), 23.34 (d, $^3\text{J}(^{31}\text{P-O-C-}^{13}\text{C}) = 8.53$ Hz, $-\text{CH}_2$ -), 69.63 (d, $^2\text{J}(^{31}\text{P-O-}^{13}\text{C}) = 6.11$ Hz, $-\text{OCH}_2$), $^{31}\text{P}(^1\text{H})$ NMR (CDCl₃) δ : 96.9 ppm.

2.2.4. $Bi\{S_2P(OPr^i)_2\}_3$ (4)

Recrystallized from dichloromethane–hexane as bright yellow crystalline solid (yield: 2.82 g (94.9%)), mp 68 °C. Anal. Calcd. for C $_{18}$ H $_{42}$ BiO $_{6}$ P $_{3}$ S $_{6}$: C, 25.47; H, 4.98; Bi, 24.62; S, 22.66%. Found: C, 25.48; H, 4.96; Bi, 24.85; S, 22.70%. IR (in Nujol) cm $^{-1}$: 1179 (ν_{C-O}), 985 (ν_{P-OR}), 635 (ν_{asym} PS $_{2}$), 526 (ν_{sym} PS $_{2}$). 1 H NMR (CDCl $_{3}$) δ : 1.37–1.39 (d, 6.30 Hz, –CH $_{3}$), 4.83–4.95 (septet, 3 J(1 H–C–C– 1 H)=6.30 Hz, –OCH), 13 C(1 H) NMR (CDCl $_{3}$) δ : 23.74 (d, 3 J(31 P–O–C– 13 C)=4.75 Hz, –CH $_{3}$), 73.59 (d, 2 J(31 P–O– 13 C)=5.51 Hz, –OCH), 31 P(1 H) NMR (CDCl $_{3}$) δ : 92.9 ppm.

2.3. Preparation of Bi_2S_3 nanorods by solvothermal decomposition of precursors

In a typical experiment, 300 mg of precursor and 15 ml of ethylene glycol were taken in a round bottom flask. The reaction mixture was refluxed for 2 h at 197 °C under nitrogen atmosphere with continuous stirring. The color of the solution changed to black. After 2 h, the reaction was cooled to room temperature. The grayish black material was isolated by centrifuging followed by thorough washings with methanol. It was then dried under vacuum.

The materials thus obtained were characterized by XRD, EDAX, SEM, TEM and Raman spectroscopy.

2.4. Deposition of Bi₂P₄O₁₃ thin films

Bismuth phosphate thin films were deposited by the aerosol assisted chemical vapor deposition (AACVD) technique. The films were grown on microscopic glass slides under a nitrogen atmosphere, using a horizontal hollow reactor. In a typical deposition, 200 mg of precursor was dissolved in toluene (15 ml) in a two necked round bottom flask. The glass slides were cleaned prior to use by washing successively with dilute nitric acid and distilled water. About 5–6 substrates of 1×2 cm² dimensions were placed inside a guartz tube in an AACVD reactor and were heated at the desired temperature under nitrogen atmosphere for 10 min. The precursor solution was then placed on an ultrasonic humidifier in order to generate aerosol droplets. The aerosol was carried into the hot wall zone of the reactor with the help of nitrogen as a carrier gas with a flow rate of 1.5 l/h. The deposition was carried out for 1 h at different temperatures ranging from 250 to 375 °C. Decomposition of precursors took place to give uniform deposition of Bi₂P₄O₁₃ thin films on glass substrates. After deposition, the reactor was cooled to room temperature under nitrogen atmosphere to avoid in situ oxidation. Then the films were taken out.

3. Results and discussion

3.1. Synthesis and spectroscopy of precursors

Treatment of BiCl₃ with Pb{ $S_2P(OR)_2$ }₂ (R=Me, Et, Pr^n and Pr^i) in THF gave complexes of the type, Bi{ $S_2P(OR)_2$ }₃ (R=Me (1), Et (2), Pr^n (3) and Pr^i (4)) (Eq. (1)) in high yields (91.5–98.5%) which on recrystallization from dichloromethane–hexane mixture resulted in bright yellow crystalline solids.

$$2 \ BiCl_3 + 3 \ Pb \big\{ S_2 P(OR)_2 \big\}_2 \overset{THF}{\longrightarrow} 2 \ Bi \big\{ S_2 P(OR)_2 \big\}_3 + 3 \ PbCl_2 \tag{1} \label{eq:2}$$

Download English Version:

https://daneshyari.com/en/article/7760075

Download Persian Version:

https://daneshyari.com/article/7760075

Daneshyari.com