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a b s t r a c t

The Debye model is modified for the calculation of the lattice thermal conductivity and used to gain

insight into the anisotropy of Bi2Te3. In this work, the Debye temperature is not used to estimate the

cutoff frequencies of the phonons that carry heat. The cutoff frequencies are defined by setting an upper

limit to the energy of acoustic phonons using the complete dispersion relations. The anisotropy of the

thermal conductivity is found to be unrelated to the anisotropy of the sound velocities. It is found that

the sound velocity is almost isotropic when the longitudinal and two transversal waves are added

together. In addition the relaxation time must be a function of the cutoff frequencies and counter-

balances the anisotropy arising from the variation of the number of acoustic phonons traveling in

various directions. It is concluded that the anisotropy of the thermal conductivity is mostly related to

the Grüneisen’s constant.

& 2012 Elsevier Inc. All rights reserved.

1. Introduction

The kinetic theory of the lattice thermal conductivity has
provided only qualitative information so far. Measurement of
the thermal conductivity as a function of the temperature was the
only tool used to check the theory but there were so many so-
called adjustable parameters in the theory that an agreement
between theory and experiment was almost always found.
Significant conceptual differences in the theory could not be
checked experimentally. As a result the kinetic theory has not
been significantly improved since the 1960s [1,2].

The key idea presented here is to study the anisotropy of the
thermal conductivity theoretically and compare the prediction
obtained with published experimental data for Bi2Te3 [3]. What
did motivate us is to give a simple but not simplistic explanation for
the anisotropy of the lattice thermal conductivity of Bi2Te3. This
article about the lattice thermal conductivity complements our
article about the anisotropy of the electrical properties of Bi2Te3 [4].

In the present article realistic dispersion relations of Bi2Te3 are
used to define the cutoff frequencies of acoustic phonons along
the principal axes. The speed velocity in anisotropic medium are
calculated exactly using the Christoffel’s equation [5]. It is shown
that the cutoff frequencies must also enter in the calculation of
the relaxation time in order to explain the anisotropy of the
lattice thermal conductivity of Bi2Te3.

2. Cutoff-frequencies

There are no very well established methods to extract the
cutoff frequencies of the acoustic phonons from the complete
dispersion relation. According to Han and Klemens, the cutoff
frequencies are the lowest frequencies mode at the zone bound-
ary [6]. This definition is also adopted by Morelli, Heremans and
Slack [7]. In this work the cutoff frequencies of the acoustic
phonons are defined where an acoustic branch crosses an optical
branch. This choice is justified later. The value of the cutoff
frequencies so defined are (Fig. 1) yZ¼51 K (along the c

!
axis),

yX¼69 K and yY¼65 K (perpendicular to the c
!

axis). The cutoff-
frequencies are clearly anisotropic. Since the cutoff frequency is
the lowest along the c

!
axis, it is tempting to explain the lowest

thermal conductivity in that direction with the concept of cutoff
frequency of the acoustic phonons. Nevertheless results that are
presented later in this article cast a shadow over this idea. Still the
cutoff-frequencies of the acoustic phonons are 2–3 times smaller
than the frequency obtained from the Debye temperature and this
already explains why the thermal conductivity of Bi2Te3 is low. A
cutoff frequency about 76 K was estimated in Ref. [8].

3. Sound velocity in anisotropic medium

The sound velocity in Bi2Te3 has been calculated using the
Christoffel’s equation in every direction [10]. Examples are shown
in Fig. 2 for the speed velocity calculated in the basal plane of the
hexagonal unit cell and perpendicular to it. The detail of the
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calculation can be found in Ref. [11]. The main result is that the
anisotropy of the lattice thermal conductivity measured in Bi2Te3

is not explained by the anisotropy of the sound velocities.

4. Relaxation rate

The scope of this section is limited to justify at least partially
the most common expression for the relaxation rate due to the
Umklapp-Processes: [12,13]

t�1ðoÞ ¼ Bo2 T

yD
e�yD=bT ð1Þ

where

B¼
_g2

Mv2
ð2Þ

yD is the Debye temperature, M is an average mass of a single
atom in the solid, v is the average sound velocity and g is the
Grüneisen’s constant. b is an adjustable parameter.

A general and meaningful formulation of the relaxation rate
starts with a description of the collisions that are to our point of
view the most likely to happen. A phonon identified by (’) hits
another phonon (’’) so that it is reflected back. The incoming and
reflected waves tend to build standing waves similar to an optical
wave with no net momentum (acoustic phonon ’’’). Since phonons
are waves, and waves can be viewed as medium of periodic

impedance (period a), the scattering satisfies Bragg conditions:

l¼ 2a=n ð3Þ

If n41, energy is transferred to phonon modes of higher
energy. Since the energy is conserved, the energy of the incoming
and reflected wave will decrease [11,14] and at the end there will
be only optical phonons remaining with no net momentum. The
time needed for phonons to go through the above described
process may be called the relaxation time. In this work, the cutoff
frequencies of the acoustic phonons are defined exactly where an
acoustic branch crosses an optical branch because the transition
probabilities � ð1�cosðDE=EÞÞ=ðDE=EÞ2 between two states of
energy E decreases sharply when the energy of the two states
moved of DE apart [2].

In order to calculate the relaxation time t, we consider a
phonon moving with the speed v scattered when its path crosses
the cross-sectional area S of a scattering center (a phonon). Since
t is the mean time taken for one scattering processes to occur, the
mean free path l between scattering processes is vt. If N is the
density per unit of volume of target-phonons, then in the volume
Sl, there is one scattering center. Therefore (Svt)N¼1. Thus the
relaxation rate is given by:

t�1 ¼ SvN ð4Þ

It is evident that N is a function of the cutoff frequencies since
scattering occurs when the transition probability is the highest,
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Fig. 1. Dispersion relation of Bi2Te3 along the principal axes taken from Ref. [9]. The cutoff frequencies in this work are defined exactly where the acoustic branch cross

the optical branch. Only the first three optical branches are shown.
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Fig. 2. Sound velocity of Bi2Te3 in the basal plane of the hexagonal unit cell and perpendicular to it. The longitudinal polarization and transversal polarizations are shown

in red and blue, respectively. The average of the sound velocity of the longitudinal and two transverse waves is black. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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