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a b s t r a c t

Normal forces exerted by the adhesive to the substrate during the squeeze flow occurring in compaction of
bonded joints are analyzed using theoretical, numerical and experimental techniques. An analytical solution,
derived from the squeeze-flow theory of a viscoplastic material, is generalized to be valid for any initial shape
of the adhesive cord. The rheology of the material is modeled according to the Herschel–Bulkley model and is
fitted with experimental data available from the characterization of an epoxy-based adhesive. The analytical
law is compared with a numerical model, where the two-phase problem for the squeeze-flow test is solved by
finite-volume methods using a commercial CFD solver. The results obtained with these two approaches show
excellent agreement with experimental forces obtained for a wedge-shaped specimen. The proposed
methodology can therefore be useful for the optimization of the bond lines in assembling processes.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

During the last years, the utilization of adhesive-bonding
techniques has seen a remarkable growth. Besides their lower
production cost indeed, these procedures offer several important
advantages over conventional mechanical fasteners, such as high
strength-to-weight ratio, resistance to corrosion and degradation
in aggressive environments, continuity and impermeability of the
joints, efficient bonding of dissimilar or heterogeneous materials
and, through a careful selection of the materials, and a high
capacity for energy and vibration absorption [1].

However, in large assemblies the thickness and shape of the
adhesive cord can strongly affect the strength of the joints and
thus of the component [2]. This is a well known issue, especially
for rigid or toughened structural adhesives, where significant
reductions of the maximum load capacity of the joints are
observed if the bondline thickness deviates from an optimum
value. This phenomenon is sometimes associated to a change in
the failure mode (from cohesive to adhesive, generally for thick-
nesses lower than the optimum one) and in other cases it is
produced by a raise in the stress concentration that usually
appears in the extremes of the overlaps (when the thickness
exceed the optimum one). For a comprehensive overview of these

issues the reader is referred to [3,4] and references therein. For
these reasons the compaction process constitutes a critical phase
that must be adequately controlled to guarantee the final quality
of the joints. In particular, the assembly process must be designed
to ensure a final thickness within the admissible ranges, in order
to guarantee the required mechanical performance. In certain
cases, the adhesive thickness along the bonded areas cannot be
controlled through gauges or spacers, thus the final result mainly
depends on the forces imposed during compaction.

In this work we analyze these forces by means of analytical tools,
a two-phase numerical model and experimental measurements.
The test case is the squeeze-flow of an epoxy-based adhesive,
whose rheology is modeled according to a viscoplastic constitutive
law (Herschel–Bulkley model), fitted with experimental data avail-
able from a characterization. An analytical solution is generalized to
be valid for any initial shape of the adhesive cord (wedge-shaped in
this work). The numerical model is intended as an auxiliary tool,
whose utilization in conjunction with the analytical law allows to
correctly predict compressive forces in complex adhesive shapes.
The aim of this crossed analysis is to provide valuable information
about the limits of each technique and about how to combine them
to accurately predict compaction forces for different geometries.
Finally, the control of the compaction forces allows optimizing the
parameter set-up in the assembly process.

The outline of the paper is as follows: the experimental
set-up is firstly briefly explained; successively the analytical and
numerical approaches are discussed. The results obtained and the
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comparison between the approaches with experimental data are
presented in Section 3. A brief discussion of the results and of the
proposed methodologies concludes the paper.

2. Methodology

2.1. Experimental set-up

The squeeze tests were performed using the experimental set-up
shown in Fig. 1. A squeeze tool, internally designed, was mounted in
a MTS Universal Testing Machine (model Alliance RF100) [5]. The
tests were conducted with two load cells: a 1 kN load cell for the
tests on the cylindrical specimens and a 100 kN one for those on the
wedge-shaped specimens. The tests were performed with a cross-
beam velocity between 50 mm/min and 250 mm/min. The squeeze
tool is based on guided parallel plates. The four vertical columns
ensure a uniform distribution of pressure over the specimen. The
lower aluminum plate is fixed to the frame plane, whilst the upper
one is assembled to the mobile crossbeam of the universal machine.
For the squeeze, a wooden block covered by kraftliner paper was
mounted on the upper plate using bolts. In order to contain the
lateral overflow of the material, for the wedge-shaped specimen
additional aluminum profiles were added to the lower plate. The gap
between these profiles and the wooden block was adjusted to
guarantee a friction-free vertical movement. The adhesive samples
were previously prepared on separate plates. The shape of the
specimens (cylindrical or wedge-shaped) was obtained by firstly
using a palette for a preliminary modeling and then accurately
finished with a laser-cut steel. Each specimen was tested on its
individual plane used for the preparation, which was correctly
positioned and fixed to the universal machine. Force values were
instantaneously recorded by TestWorkss 4 [6].

2.2. Analytical model

Analytical solutions for squeeze-flow are typically derived for
cylindrical samples [7] as shown in Fig. 2(a). For this case, the
following conditions are considered: a constant velocity V¼�dH/dt;
an inter-plate volume πR2maxH, which is assumed to be always full of
material and thus the contribution to the force of the overflow (when
squeezing beyond Rmax) is neglected; a rheology given according to
the Herschel–Bulkley model, which in scalar form reads

τ¼ τ0þK _γn; ð1Þ

where τ0 is the yield shear–stress threshold, K the consistency index
and n the power-law index. This configuration has been previously
studied [8,9], particularly, Adams et al. [10] demonstrated that for no-
slip boundary conditions at the walls and a plasticity number defined
as S ¼ ðRVK1=nÞ=ðH2τ01=nÞ, in the ranges 0oSo100 and 0.1ono1
the mean pressure has the following form:

p¼ F
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where s0 is the uniaxial yield stress. It is typically assumed that R/H⪢1
and that the contribution of s0 is negligible as compared with Rτ0=H.
However, these two simplifications must be avoided for generalizing
the solution to arbitrary shapes of the sample, see for example
Fig. 2(b). For the generalization, the contact area must be a function
of the contact length L. Thus, for cylindrical samples L¼R and the
contact area is computed as A¼ πL2. For wedge-shaped samples this
contact area is A¼ LD. The definition of the generalized plasticity
number S is then

S¼ LV

H2

K
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; ð3Þ

and the generalized expression for the compressive force follows from
Eq. (2)
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The yield stress threshold is straightforwardly defined from the above
equation in the limit of V-0 and neglecting s0 as

τ0 ¼
3HF
2LA

: ð5Þ

When working at constant force, an expression for the velocity as
a function of the force can be obtained from Eq. (4) and can be used
to compute the separation height as a function of time as
HðtnÞ ¼Hðtn�1Þ�Vδt, where the explicit expression for the squeeze

Fig. 1. Experimental system used for the characterization and the squeeze-
flow tests.

Fig. 2. Schemes for the analytical solution: cylindrical (a) and wedge-shaped
(b) geometries. The dimensions are as follows: H ranges from 10 to 25 mm; Lmax

is 160 mm, R ranges from 15 to 30 mm and D ranges from 100 to 400 mm.
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