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a b s t r a c t

The literature presents several analytical models and solutions for single- and double-lap bonded joints,
whilst the joint between circular tubes is less common. For this geometry the pioneering model is that of
Lubkin and Reissner, Transactions of The ASME 78 (1956) 1213–1221, in which the tubes are treated as
cylindrical thin shells subjected to membrane and bending loading, whilst the adhesive transmits shear
and peel stresses which are a function of the axial coordinate only. Such assumptions are consistent with
those usually adopted for the flat joints. A former investigation has shown that the L–R model agrees
with FE results for many geometries and gives far better results than other models appeared later in the
literature. The aim of the present work is to obtain and present an explicit closed-form solution, not
reported by Lubkin and Reissner, which is achieved by solving the governing equations by means of the
Laplace transform. The correctness of the findings, assessed by the comparison with the tabular results of
Lubkin and Reissner, and the features of this solution are commented.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The literature survey carried out in the first part of this study [1] and the related comparison with finite element (FE) results have
evidenced that, among the known models of the tubular bonded joints under axial loading [2–9], only the one by Lubkin and Reissner [2]
gives a truthful distribution of the peel stress in the overlap, while the shear component is predicted correctly in all models. Moreover, the
FE results evidence that the peel and shear stresses are the most important components; the remaining ones, namely the axial and hoop
stresses, have similar magnitude and are about one half of the peel stress.

On the basis of these findings, the aim of this work is reconsidering the model by Lubkin and Reissner to make up for its practical
shortcoming, which is the lack of an explicit closed-form solution. The set of differential equations is solved by means of the Laplace
transform, with a procedure modified to cope with the issue of dealing with a boundary problem (the known conditions are applied at the
ends of the overlap) instead of an initial value problem (as in typical dynamic problems). The result is an explicit formula for the solution,
which evidences the differences with respect to the flat lap joint and allows for direct calculation of the stresses.

2. Lubkin and Reissner model

The model by Lubkin and Reissner [2], for which a brief description has already been given in the first part [1] of the present study, is
reviewed here in more detail. Fig. 1 shows the shape of the joint as well as the geometrical and material properties. Considering first the
tubes (subscripts 1, 2), a1 and a2 are the mean radii of the walls, E1 and E2 are the Young moduli, ν1 and ν2 are the Poisson's ratios.
Regarding the adhesive (subscript a, when adopted), a is the mean radius of the layer, η is the thickness, Ea is the Young modulus, Ga is the
shear modulus. The axial force loading the joint is F, the overlap length is 2c; thus, having set the origin at midspan, the axial coordinate x
varies in the range 7c. Also the normalized coordinate z is adopted, varying between 0 (left end) and 1 (right end). With reference to
Fig. 2, accounting for axial (T1, T2), transverse (V1, V2) and hoop (N1, N2) forces per unit length, bending moments (M1, M2) per unit length,
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peel (sy) and shear (τxy) stresses in the adhesive, the following equilibrium equations can be written for the two adherends:
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dT2

dx
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The following equations of axial, hoop and bending deformability can be respectively written, which involve the longitudinal (u1, u2)
and transverse (v1, v2) displacements at the mean radii of the tubes:
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;
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where D1, D2 are the bending stiffnesses, defined as Di ¼ Eit3i =12ð1�ν2i Þ, with i¼1, 2.
The peel and shear stresses in the adhesive are related to displacements of the outer surface of tube 1 and inner surface of tube 2:

sy ¼
Ea
η
ðv2�v1Þ ð7Þ

τxy ¼
Ga

η
ðu2;in�u1;ouÞ ð8Þ

It must be noted that in Eq. (7) the surface displacements coincide with those of the mean surfaces, whilst in Eq. (8), accounting for the
membrane and bending behaviour, the displacements are u1;ou ¼ u1�ðdv1=dxÞðt1=2Þ for the outer surface of tube 1 and u2;in ¼ u2þ
ðdv2=dxÞðt2=2Þ for the inner surface of tube 2.

Thus, the problem involves in total fourteen equations – from (1a,b) to (6a,b), plus (7) and (8) – in the fourteen unknowns T1, V1, N1,M1,
u1, v1; T2, V2, N2, M2, u2, v2; sy, τxy, which are all a function of x. In the solution procedure depicted in [2], by means of a sequence of
manipulation Vi, Ni, Mi, ui (i¼1,2) and sy are eliminated; moreover, noticing that for the global axial equilibrium the condition
2π a1T1þa2T2ð Þ ¼ F must hold, an auxiliary unknown T0 is assumed such that

aT0 ¼ a2T2�a1T1 ð9Þ
and, from Eq. (1a,b),

dT0

dx
¼ 2τxy ð10Þ

Therefore, the axial forces per unit length T1, T2 and the shear stress in the adhesive τxy can be expressed as a function of such auxiliary
unknown T0; by mathematical manipulations a set of three simultaneous differential equations is obtained in the three unknowns v1, v2
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Fig. 1. Schematic of the tubular joint (also the related elastic constants are shown).
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Fig. 2. Elementary free body diagrams for the joint.
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