ARTICLE IN PRESS

Polyhedron xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Synthesis and characterisation of POC_{sp3}OP supported Ni(II) hydroxo, hydroxycarbonyl and carbonate complexes

Klara J. Jonasson, Abdelrazek H. Mousa, Ola F. Wendt*

Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden

ARTICLE INFO

Article history: Received 29 June 2017 Accepted 12 September 2017 Available online xxxx

Keywords: Nickel Pincer Hydroxide Carbon monoxide Carbon dioxide

1. Introduction

The chemical reactivity of late transition metal complexes containing metal–oxygen covalent bonds has attracted much interest over the last decades [1]. These bonds are generally weaker than their metal–carbon counterparts [1c], and accordingly metal hydroxo and alkoxo complexes have been suggested as reactive intermediates in many catalytic processes [2], and also to play an important part in several biological systems [3]. However, examples of mononuclear terminal hydroxo complexes of group 10 transition metals remain relatively few and typically require the steric stabilization that the tridentate pincer ligands constitute [4–6], in order to prevent formation of species with higher nuclearity such as bridged Ni(II)–(OH)–Ni(II) [7] or doubly bridged Ni(II)(OH)₂Ni (II) complexes [8].

Investigating the reactivity of terminal hydroxo complexes towards CO_2 is relevant, partly from a biological perspective, where the metalloenzyme catalysed hydration of CO_2 to carbonic acid takes place at a Zn–OH active site [9], but also for synthetic applications in the development of transition metal mediated functionalisations of CO_2 , e.g. in the synthesis of organic carbonates [10]. The potential utilization of cheap and abundant CO_2 as a synthetic C1 source remains a major target for making the chemical industry sustainable [11].

 CO_2 insertion into an M–X covalent bond commonly generates M–O(CO)X carboxylate species, but in enzyme chemistry Ni(II) is

* Corresponding author. E-mail address: ola.wendt@chem.lu.se (O.F. Wendt).

https://doi.org/10.1016/j.poly.2017.09.054 0277-5387/© 2017 Elsevier Ltd. All rights reserved.

ABSTRACT

A nickel(II) hydroxo complex (**3**) supported by a cyclohexyl based POC_{sp3}OP pincer ligand (POC_{sp3}OP = *cis*-1,3-Bis-(di-*tert*-butylphosphinito)cyclohexyl) is reported. Complex **3** reacts with CO to form the corresponding hydroxycarbonyl complex, (POC_{sp3}OP)NiCOOH (**4**). Complex **3** is also reactive towards CO₂, forming a bicarbonate species (**5**) that under reduced pressure loses ½ eq. of H₂O and CO₂ to give a binuclear, bridged carbonate complex (**6**). All compounds were characterized in the solid state by X-ray diffraction.

© 2017 Elsevier Ltd. All rights reserved.

POLYHEDRON

known to occasionally coordinate the CO₂ carbon. The carbon monoxide dehydrogenases (CODH's) catalyse the reversible reduction of CO₂ to CO at a nickel centre via the formation of a nickelcarbon bond [11b,12]. This process has been subject to biomimetic reactivity studies with Ni(II) pincer complexes, with hydroxycarbonyl species as proposed intermediates [13]. The process directly corresponds to the reverse water–gas shift reaction (RWGS), and accordingly hydroxycarbonyl species are suggested to play a crucial part as intermediates in the industrial organometallic catalysis of the forward reaction (WGS) [14].

Bicarbonate and hydroxycarbonyl complexes show a similarly low stability as the terminal hydroxo complexes, with a propensity of forming dimeric species, and it was not until recently that the first hydroxycarbonyl nickel complex was isolated and structurally characterized [13].

Whereas the reactivity of group 10 PC_{Ar}P hydroxide and alkoxide complexes towards CO and CO₂ is well documented [4e,5,6b,15], the chemistry of their PC_{sp3}P counterparts has not been studied. Yet coordination of an sp³-hybridised PCP carbon expectedly gives a higher electron density at a metal centre relative an sp²-hybridised carbon, which might be beneficial for insertion reactions into the M—OH bond. We have previously accomplished the first successful cyclometallation of a cyclohexyl-based POC_{sp3}OP pincer ligand, affording tridentate chelate (POC_{sp3}OP)NiX complexes (X = Cl, Br) followed by cyclometallation by the same ligand on iridium [16]. We here report on the synthesis of the analogous nickel hydroxo complex (POC_{sp3}OP)NiOH (**3**) via two alternative pathways. Reaction of **3** with CO or CO₂ gives insertion into the Ni—OH bond, affording

the corresponding hydroxycarbonyl complex (**4**) and carbonate complex (**5**) respectively, that were both isolated and characterised by means of NMR spectroscopy and X-ray crystallography.

2. Experimental

2.1. General comments

All manipulations were performed under a nitrogen or argon atmosphere using standard Schlenk or glovebox techniques, except if noted. Solvents were purified by vacuum distillation from sodium/benzophenone ketyl radical. The complex trans-[NiCl{cis-1,3-Bis-(di-tert-butylphosphinito)cyclohexane}] (1) was synthesized according to known procedures [16a]. All other chemicals were purchased from commercial suppliers and used as received. ¹H, ¹³C and ³¹P NMR experiments were recorded on a Varian Unity INOVA 500 spectrometer, operating at 499.76 MHz (¹H). For ¹H and ¹³C NMR spectra, the residual solvent peak was used as an internal reference. ³¹P NMR spectra were referenced externally using 85% H_3PO_4 at $\delta = 0$ ppm. Multiplicities are abbreviated as follows: (s) singlet, (d) doublet, (t) triplet, (q) quartet, (m) multiplet, (br) broad, (v) virtual. IR spectra were obtained on a Bruker ALPHA FT-IR. Elemental analyses were performed by H. Kolbe Microanalytisches Laboratorium, Mülheim an der Ruhr, Germany. Compounds 3–5 failed to give a satisfactory elemental analysis and their purity was confirmed by ¹H, ³¹P and ¹³C NMR spectroscopy (see SI).

2.2. Crystallography

XRD-quality crystals of compounds **2–6** were obtained through recrystallization from benzene or hexane. Intensity data were collected with an Oxford Diffraction Excalibur 3 system, using ωscans and Mo Kα (λ = 0.71073 Å) radiation [17]. The data were extracted and integrated using Crysalis RED [18]. The structure was solved by direct methods and refined by full-matrix leastsquares calculations on F^2 using SHELXTL5.1 [19]. Molecular graphics were generated using CrystalMaker[®] 8.3.5 [20].

2.3. Preparation of trans-[NiONO₂{cis-1,3-Bis-(di-tertbutylphosphinito)cyclohexane}] (2)

Complex 1 (40.0 mg, 0.080 mmol) and AgNO₃ (24.2 mg, 0.142 mmol) were dissolved in THF (5 mL) and the mixture was stirred over night at RT, whereafter the solvent was removed in vacuo. Extraction with Et_2O and evaporation of the solvent afforded **2** as a brick red, microcrystalline solid. Yield: 32.3 mg (77%). ¹H NMR (C_6D_6) : δ 3.42 (dt, J = 3.5 Hz, J = 10.5 Hz, CH₂CHO, 2H), 1.85 (t, J = 11.0 Hz, HC-Ni, 1H), 1.77–1.72 (m, CH₂CH₂CHO, 2H), 1.36 (vt, J = 13.5 Hz, ^tBu, 36H), 1.37-1.35 (m, CH₂CH₂CH₂, 1H), 0.92-0.79 (m, CH₂CH₂CHO, 2H and CH₂CH₂CH₂, 1H). ¹³C{¹H} NMR (C₆D₆): δ 87.6 (vt, J_{PC} = 14.3 Hz, CH₂CHO, 2C), 54.1 (t, J_{PC} = 14 Hz, HC-Ni, 1C), 39.4 (vt, J_{PC} = 11.3 Hz, C(CH₃)₃, 2C), 37.8 (vt, J_{PC} = 17.3 Hz, C (CH₃)₃, 2C), 33.4 (vt, J_{PC} = 11.6 Hz, CH₂CH₂CHO, 2C), 27.8 (vt, J_{PC} = 6.7 Hz, C(CH₃)₃, 6C), 27.5 (vt, J_{PC} = 6.3 Hz, C(CH₃)₃, 6C), 21.3 (s, CH₂- CH_2CH_2 , 1C). ³¹P{¹H} NMR (C₆D₆): (180.3 δ (s). IR (ATR): $v_{as}(NO_2) =$ 1465 cm⁻¹, $v_s(NO_2) = 1287$ cm⁻¹, v(NO) = 1021 cm⁻¹. Anal. Calc. for C₂₂H₄₅NNiO₅P₂ (524.24): C, 50.40; H, 8.65; N, 2.67. Found: C, 50.60; H, 8.66; N, 2.64%.

2.4. Preparation of trans-[NiOH{cis-1,3-Bis-(di-tertbutylphosphinito)cyclohexane}] (**3**)

Method I. **1** (75.0 mg, 0.15 mmol) and NaOH (60.0 mg, 1.50 mmol) were dissolved in THF (5 mL) and the mixture was heated

to 70 °C for a period of 14 days. The reaction was concentrated *in vacuo*, redissolved in pentane and filtered through celite. Storage at -30 °C afforded **3** as yellow crystals. Yield: 20.1 mg (28%).

Method II. **2** (78.6 mg, 0.15 mmol) and NaOH (60.0 mg, 1.50 mmol) were dissolved in THF (5 mL) and the reaction was stirred at RT for 24 h. The solvent was removed *in vacuo* and the solid residues dissolved in pentane and filtered through celite. Removal of the solvent afforded **3** as a yellow powder. Yield: 39.5 mg (55%). ¹H NMR (C₆D₆): δ 3.52–3.46 (m, CH₂CHO, 2H), 1.96–1.93 (m, CH₂-CH₂CHO, 2H), 1.56 (t, *J*_{PH} = 11.5, *H*C-Ni, 1H), 1.52 (vt, *J* = 13.0 Hz, ¹Bu, 18H), 1.48 (vt, *J* = 13.5 Hz, ¹Bu, 18H), 1.50–1.47 (m, CH₂CH₂CH₂, 1H), 1.03–0.93 (m, CH₂CH₂CHO, 2H and CH₂CH₂CH₂, 1H), -2.71 (t, *J*_{PH} = 6.0, Ni-OH, 1H). ¹³C{¹H} NMR (C₆D₆): δ 87.8 (vt, *J*_{PC} = 10 Hz, C(CH₃)₃, 2C), 37.3 (vt, *J*_{PC} = 16 Hz, C(CH₃)₃, 2C), 33.7 (vt, *J*_{PC} = 12 Hz, C(CH₃)₃, 6C), 22.1 (s, CH₂CH₂CH₂, 1C). ³¹P{¹H} NMR (C₆D₆): 173.9 δ (s).

2.5. Reaction of **3** with CO. Formation of trans-[Ni(C(O)OH){cis-1,3-Bis-(di-tert-butylphosphinito)cyclohexane}] (**4**)

Complex **3** was dissolved in C₆D₆ (0.6 mL) in a J. Young tube, and the tube was pressurized with approximately 2 atm CO. The sample was stored at RT for 3 days, until **4** was observed as the only significant compound by means of NMR-spectroscopy. Further storage at RT afforded fine, light yellow, X-ray quality crystals. ¹H NMR (C₆D₆): δ 3.55–3.50 (m, CH₂CHO, 2H), 2.07–2.04 (m, CH₂-CH₂CHO, 2H), 1.65 (t, *J*_{PH} = 11.5 Hz, HC-Ni, 1H), 1.57–1.52 (m, CH₂-CH₂CH₂, 1H), 1.40 (vt, *J* = 13.5 Hz, ¹Bu, 18H), 1.37 (vt, *J* = 13.5 Hz, ¹Bu, 18H), 1.09–0.90 (m, CH₂CH₂CHO, 2H and CH₂CH₂CH₂, 1H). ¹³C{¹H} NMR (C₆D₆): δ 228 (s, Ni-COOH, 1C), 85.8 (vt, *J*_{PC} = 14.2 Hz, CH₂CHO, 2C), 68.6 (t, *J*_{PC} = 26.9 Hz, HC-Ni, 1C), 40.4 (vt, *J*_{PC} = 15.8 Hz, C(CH₃)₃, 2C), 38.5 (vt, *J*_{PC} = 20.7 Hz, C(CH₃)₃, 2C), 33.9 (vt, *J*_{PC} = 12.1 Hz, CH₂CH₂CHO, 2C), 28.6 (vt, *J*_{PC} = 5.5 Hz, C(CH₃)₃, 6C), 28.3 (vt, *J*_{PC} = 5.3 Hz, C(CH₃)₃, 6C), 22.4 (s, CH₂CH₂CH₂, 1C). ³¹P {¹H} NMR (C₆D₆): δ 193.4 (s).

2.6. Reaction of **3** with CO₂. Formation of trans-[Ni(OC(O)OH){cis-1,3-Bis-(di-tert-butylphosphinito)cyclohexane}] (**5**) and [{(cis-1,3-Bis-(di-tert-butylphosphinito)cyclohexane)Ni}₂(μ -CO₃)] (**6**)

A degassed hexane solution (7 mL) of **3** (35 mg, 0.073 mmol) was treated with 1 atm CO₂, and a fine yellow precipitate appeared within seconds. After 4 h of stirring at RT the reaction mixture was treated with toluene (1.5 mL) to afford a clear solution. Slow evaporation of the solvents afforded **5** as yellow X-ray quality crystals. Running the reaction in C_6D_6 under 4 atm CO₂ gave **5** as the predominant species in solution within 3 h, and full conversion of **3**. Removal of the C_6D_6 *in vacuo* afforded a solid residue that was fully soluble in hexane, and storage of a concentrated hexane solution at -30 °C for several days yielded X-ray quality crystals of **6**.

Complex 5: ¹H NMR (C₆D₆): δ 12.4 (br s, Ni-OC(O)OH, 1H), 3.47– 3.42 (m, CH₂CHO, 2H), 1.81–1.77 (m, CH₂CH₂CHO, 2H), 1.75 (t, J_{PH} = 11.0 Hz, HC-Ni, 1H), 1.48 (vt, J = 12.5 Hz, ¹Bu, 36H), 1.37–1.33 (m, CH₂CH₂CH₂, 1H), 0.93–0.87 (m, CH₂CH₂CHO, 2H and CH₂CH₂CH₂, 1H). ¹³C{¹H} NMR (C₆D₆): δ 161.50 (br s, Ni-OCOOH, 1C), 87.50 (vt, J_{PC} = 15.5 Hz, CH₂CHO, 2C), 53.54 (t, J_{PC} = 29.4 Hz, HC-Ni, 1C), 39.48 (vt, J_{PC} = 10.9 Hz, C(CH₃)₃, 2C), 37.72 (vt, J_{PC} = 16.3 Hz, C (CH₃)₃, 2C), 33.48 (vt, J_{PC} = 10.9 Hz, CH₂CH₂CHO, 2C), 28.10 (vt, J_{PC} = 6.5 Hz, C(CH₃)₃, 6C), 27.79 (vt, J_{PC} = 6.2 Hz, C(CH₃)₃, 6C), 21.55 (s, CH₂CH₂CH₂, 1C). ³¹P{¹H} NMR (C₆D₆): δ 178.2 (s). IR (ATR): v_{as}(CO₂) = 1615 cm⁻¹, v_s(CO₂) = 1369 cm⁻¹.

Complex **6**: ¹H NMR (C_6D_6): δ 3.50–3.45 (m, CH₂CHO, 4H), 1.93– 1.89 (m, CH₂CH₂CHO, 4H), 1.65 (vt, *J* = 13.5 Hz, ^tBu, 36H), 1.60 (vt, *J* = 13.0 Hz, ^tBu, 36H), 1.65–1.58 (HC-Ni, 2H), 1.36–1.32 (m, CH₂CH₂- Download English Version:

https://daneshyari.com/en/article/7763240

Download Persian Version:

https://daneshyari.com/article/7763240

Daneshyari.com