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A B S T R A C T

A technique that deals with scaling of structures under dynamic loads is studied here. It is assumed a
model whose material is different from the prototype so generating incomplete similarity. In order to
handle this problem, a method was developed that allows the use of different densities and mechanical
properties for replica and full-size structures. As a means to verify the technique, an analytical solution
for beams under impulsive load and numerical simulations of scaled plates subjected to dynamic loads
is explored. The theoretical solution shows that the structure density can play an important role. The
complete similarity can only be achieved if the density scaling factor is taken into account, mainly for
structures in which the inertia is comparable. The numerical investigations show that discrepancies between
the scaled variables of model and prototype are substantially reduced when the present method is applied,
even for material as different as steel and magnesium. The limitations caused by the use of different ma-
terials for model and prototype are thoroughly discussed.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The use of models to represent the actual response of a proto-
type is an important tool in many engineering applications. It is well
established in many investigations [1–3] that the direct applica-
tion of standard similarity laws to impact events impairs one of
obtaining accurate information of the prototype (real size struc-
ture) from the model (structure scaled by a factor) response. This
behaviour is usually attributed to the non-regular scalability of phe-
nomena like gravity, material failure and strain-rate hardening.

Oshiro and Alves [4] presented a way to deal with the influ-
ence of the strain-rate hardening on the non-scalability of structural
impact models by modifying the scaling factor for the initial striker
velocity. This allowed taking strain-rate effect into account for a rigid-
perfectly-plastic material with its viscoplatic behaviour defined by
a power law. Hence, the same deformed geometry pattern for both
prototype and model could be obtained. Mazzariol et al. [5] en-
hanced the formulation presented by Oshiro and Alves and imposed
arbitrarily striker velocities, compensating the input energy also by
modifying the impact mass.

Alves and Oshiro [6] proposed a method that is able to deal with
mild steel prototype using less strain-rate sensitive models; the initial

conditions are calculated according to expected structure
response. Cho et al. [7] proposed an approach that requires experi-
menting model and prototype made of the same material to obtain
scaling correction factors. This can be troublesome in experimen-
tal applications since the making of structures as well as their
material properties are often scale-dependent. The idea of using
models of slightly different material was briefly investigated with
experiments by Oshiro et al. [8], incorporating to the scaling laws
a factor that relates differences in material flow-stress between model
and prototype. The authors assumed same viscoplastic properties
and density for model and prototype.

Limitations of experimental nature motivated Westine and Mullin
[9] to use models made of different materials to capture the
behaviour of a prototype under hypervelocity impact. Their study,
however, deals with fragmentation and cannot be directly applied
to structures loaded in a way that no material failure occurs.

Recently, researchers presented studies on scaling laws relat-
ing models to the behaviour of prototype under impact loading for
sandwich structures [10], different isotropic materials [11], dynamic
failure [12] and impulsive loading [13]. In spite of all these studies,
it has been an open problem to obtain information of the proto-
type behaviour from scaled models, especially when, due to
manufacturing, costs or experimental restrictions, they are made
of different materials.

In the present investigation, scaling laws relating prototype and
scaled models with differences in materials properties, specifical-
ly the density, yield stress, strain hardening and strain-rate hardening
will be derived for structures under dynamic loads. These laws will
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be shown to give exact scaling for rigid-perfectly-plastic beams under
impulsive loading when using appropriate viscoplastic equation. They
are also applied numerically to a circular plate loaded by a pulse
load and by the impact of a mass. The given examples consider a
prototype structure made of an expensive low density material (mag-
nesium alloy AZ31B), while the models are made of materials like
mild steel or aluminium alloy.

In what follows, Section 2 describes the background of the here
developed distorted similarity approach, while Section 3 shows the
comparison between existent and developed approaches via nu-
merical results. Section 4 discusses the results, with Section 5 closing
the article.

2. Distorted similarity and structural impact

The technique in which a model (scaled by a factor β) is used
to infer the prototype behaviour is termed similarity, scaling or si-
militude. This method has been extensively studied and applied in
many works [14–22]. For impact phenomena, the main variables
and their scaling factors are long known and are listed in Table 1.
In order to achieve perfect similarity, the Π theorem [23] asserts
that all model predominant dimensionless numbers, Πi, must be
equal to the corresponding prototype dimensionless numbers:

Π Πi m i p( ) = ( ) , (1)

with m and p referring to model and prototype, respectively.
As mentioned, structures under severe dynamic loads usually do

not follow standard scaling laws due to effects such as material strain-
rate sensitivity, material failure, thermal response and gravity. When
a single geometric scaling factor is not capable of relating a proto-
type to a model, it is necessary to define other scaling factors, an
approach called distorted similarity.

2.1. Previous approaches

In order to compensate for strain-rate effects, Oshiro and Alves
[24] defined the velocity factor:
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with σd and �ε being the dynamic stress and strain-rate, respec-
tively. Equation (2) does not specify the viscoplastic law to be used,
f f= ( )�ε , and Oshiro and Alves [24] used the Cowper–Symonds equa-
tion:
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being σ0 the flow stress, p and D, viscoplastic material properties.
From Eqs. (2) and (3), it follows for model and prototype made of
the same material that [24]
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which has the shortcome of being necessary to know the model
strain-rate, �εm . This was overcame in Oshiro and Alves by adopt-
ing the Norton equation to describe the material viscoplastic
behaviour:
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yielding the velocity scaling factor

β βV
q q= −( )2 , (6)

with q being a material constant.
The chiefly advantage of Eq. (6) is that the impact velocity factor

does not require one to know, a priori, the model or prototype
behaviour. It is only necessary to know the material parameter q
to evaluate the impact velocity one should apply to the model such
that the prototype behaviour can be inferred. A variant of Eq. (6)
was proposed in Ref. [25]. In this case, it was assumed βV = 1 and
the impact mass factor was calculated using β βG

q= −3 . It is also pos-
sible to relax both impact mass and velocity [5], what leads to
important experimental advantages.

The problem of different materials for model and prototype was
studied by Alves and Oshiro [6] who proposed an approach
based on a variation of Eq. (2). In this case, the model was made
of aluminium (low sensitivity to strain-rate) and the prototype
of steel (high strain-rate sensitivity), with the velocity factor
given by:
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when adopting the Cowper–Symonds constitutive law and with the
model response, �εm , being obtained numerically or theoretically.

Mazzariol and Alves [11] revisited Ref. 24 by considering that
model and prototype are made of material with different yield
stresses, βσ0 1≠ , such that the impact mass factor now reads:

β β βσG o= 3 , (8)

being βσo the flow stress scaling factor. This equation leads to a dis-
tortion of βV, which is reduced when the model is stronger than the
prototype. In all those approaches, the density of model and pro-
totype is not considered in the correction. It seems worthwhile to
expand these scaling methodologies by considering material with
different densities, as now examined.

2.2. Different materials

Using the VSG basis (initial Velocity, V0, dynamic Stress, σd, and
impact mass, G), the following dimensionless numbers are ob-
tained [4]:
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Since a dimensionless number must be the same for model and
prototype, it follows that Π Π3 3( ) = ( )m p , or

Table 1
Factors relating the model variables to the prototype in the MLT (Mass–Length–
Time) basis.

Variable Factor Variable Factor

Length, L β Time, t βt = β
Displacement, δ βδ = β Velocity, V βV = 1
Impact mass, G βG = β3 Strain-rate, �ε β βε� = 1
Strain, ε βε = 1 Acceleration, a βa = 1/β
Stress, σ βσ = 1 Energy, E′ βE′ = β3

Force, F βF = β2 Density, ρ βρ = 1
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