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A B S T R A C T

In this paper, we present an efficient computational procedure to model dynamic fracture within the
framework of the scaled boundary finite element method (SBFEM). A quadtree data structure is used to
discretise the domain, and 2:1 ratio between the cells is maintained. This limits the number of patterns
in the quadtree decomposition and allows for efficient computation of the system matrices. The regions
close to the boundary are discretised with arbitrary sided polygons so as to facilitate accurate model-
ling of the curved boundaries. The stiffness and the mass matrix over all the cells are computed by the
SBFEM. Moreover, the semi-analytical nature of the SBFEM enables accurate modelling of the asymp-
totic stress fields in the vicinity of the crack tip. An efficient remeshing algorithm that combines the quadtree
decomposition with simple Boolean operations is proposed to model the crack propagation. The remeshing
is restricted only to a small region in the vicinity of the crack tip. The efficiency and the convergence
properties of the proposed framework are demonstrated with a few benchmark problems.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Computational modelling of crack propagation is a challenging
task that usually necessitates the availability of: (a) an efficient
remeshing algorithm, (b) an accurate numerical method and (c) sig-
nificant amount of computational resources. The finite element method
(FEM) has achieved reasonable success in this area. Early crack prop-
agation simulations with the FEM reported by Wawrzynek et al. [1–3]
employed the computational software FRANC2D developed by the
Cornell group. A three-dimensional version of the software FRANC3D
has also been developed and applied to fracture problems in three
dimensions [4,5]. Over the years, considerable effort has been in-
vested to develop methods to improve the computational modelling
aspects of crack propagation within the framework of the FEM, for
example: (a) the development of special elements [6–8]; (b) high
quality mesh generators [9,10] that enable the FEM to adapt to chang-
ing mesh topology during crack propagation; (c) adaptive refinement
techniques [11,12] that preserve the quality of the finite elements gen-
erated after remeshing with an aim to improve the accuracy of the
FEM solutions; and (d) smeared crack approach [13] where the crack

is modelled as a limiting case of two singular lines which tend to co-
incide with each other. Recently, Areias and Rabczuk [14–17] combined
the smeared cracking approach with local remeshing for finite strain
problems. This combination alleviates the need to determine the correct
characteristic length as required in the original smeared crack ap-
proach. To reduce the computational time, adaptive refinements are
usually preferred over a uniform mesh refinement. Compared with
the conforming refinements, quadtree/octree meshes [18] are par-
ticularly easy to implement. A typical quadtree/octree meshes have
few elements with additional nodes, called ‘hanging nodes’. There
are problems associated with the incompatible displacement field
introduced by the hanging nodes. While remedial techniques have
been developed, e.g. references 19 and 20, the use of quadtree/
octree meshes within the framework of the FEM is still not widespread,
especially for crack propagation problems or problems with complex
boundaries.

Another school of thought in the computational modelling of
crack propagation advocates the implicit representation of the crack
paths. The meshless methods [21–23] and the extended/generalised
FEM (XFEM/GFEM) [24,25] both fall under this school of thought.
In this approach, the crack surfaces are not explicitly discretised,
and hence, frequent remeshing is not required. In the meshless
methods, a set of paired nodes is used to model the crack sur-
faces. As the crack propagates, a new set of nodes is added to
represent the new crack surfaces. Rabczuk and Belytschko [26] pre-
sented a simplified meshfree approach to treat evolving cracks.
Within the framework, the crack can be arbitrarily oriented, and the
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growth of the crack is discretely activating the crack surfaces of in-
dividual particles. Later, Rabczuk and Belytschko [27] and Rabczuk
et al. [28] extended the cracking particle approach to model evolv-
ing cracks in three dimensions and to model shear bands with
cohesive surfaces, respectively. Many fracture problems have been
successfully modelled by both the meshless methods and the XFEM
[29–31]. Fries et al. [32] presented two approaches to treat hanging
nodes within the framework of the XFEM. The first approach relied
on deriving conforming shape functions for all the degrees of
freedom present at the hanging nodes. The second approach con-
strained the fields at the hanging nodes to be the average of the
neighbouring corner nodes of the hanging node. The basic idea in
the XFEM/GFEM is to augment the conventional finite element basis
with a priori known functions that span the singular stress field. This
facilitates the representation of cracks/crack growth independent
of the underlying finite element mesh.

In this paper, we develop a framework that centres about a hybrid
polygon–quadtree based scaled boundary finite element method
(SBFEM) to model dynamic crack propagation in isotropic materi-
als. The SBFEM developed by Song and Wolf [33] is a semi-analytical
method, known for its application in problems involving unbound-
ed domains [34–36] and fracture [37–39]. The SBFEM is also
sufficiently flexible that it can be formulated on any star convex
polygon [40,41]. This enables the SBFEM to be directly adapted for
computations in quadtree meshes. The displacement incompati-
bility between adjacent cells introduced by the presence of hanging
nodes is eliminated by modelling each cell as a polygon irrespec-
tive of the presence of hanging nodes. The crack tip is modelled by
the SBFEM. This enables the asymptotic stress field in the vicinity
of the crack tip to be modelled accurately. As a crack propagates
within the domain, the new boundaries that are generated by the
new crack surfaces destroy the quadtree data structure. To this end,
we propose a simple remeshing algorithm that combines the
quadtree decomposition with simple Boolean operations. The
remeshing is restricted only to a small region in the vicinity of the
crack tip.

This manuscript is organised as follows. Section 2 provides a brief
account of the SBFEM formulation and its salient features when
adapted for computations with quadtree meshes. In Section 3, we
introduce the application of the SBFEM within the context of hybrid
polygon–quadtree meshes, which leads to an accurate and an ef-
ficient approach to model dynamic crack propagation. The
computation of dynamic stress intensity factors, the remeshing al-
gorithm and the mesh mapping procedure are also discussed. Section
4 shows the application of the hybrid polygon–quadtree SBFEM in
some numerical benchmarks. The major conclusions are summarised
in Section 5.

2. Quadtree-based scaled boundary finite element method

2.1. Scaled boundary finite element formulation

This section summarises the SBFEM for elasto-dynamics. Only
the main equations necessary for the implementation of the method
are explained. The reader is referred to references 42 and 43 for a
more detailed account of the SBFEM for elasto-dynamics. The SBFEM
can be formulated on star convex polygons with arbitrary number
of sides [40]. The crux of the method relies on defining a centre from
which the whole domain is visible. When modelling discontinu-
ous surface, for example, crack, the polygon enclosing the crack
should not form a closed loop, and the scaling centre should be
placed at the crack tip. Any point (xn, yn) in the domain is related
to the scaling centre coordinates, xc and the coordinates of the nodes
on the boundary xb by the following equation [33]:

x x N xn c o o b= + ξ ξ η( , ) (1)

The geometry of the polygon is scaled with respect to the scaling
centre. A radial coordinate, ξ, satisfying 0 ≤ ξ ≤ 1 is defined at the
scaling centre. ξ = 0 at the scaling centre and ξ = 1 at the polygon
boundary. Fig. 1 shows the SBFEM coordinate system on a generic
star convex polygon. Each edge on the polygon boundary is
discretised using one dimensional line elements with local coor-
dinate, η, typical in the FEM.

Within a sector covered by a line element on the polygon bound-
ary, the displacement field is expressed as

u N cS( , ) ( ) ( )ξ η η ξ= −YYn
u n (2)

where c is the vector of integration constants and N(η) is the shape
function matrix
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and m is the number of nodes. The matrices YYn
u( ) and Sn represent

the deformation modes that can be represented by the polygon. They
are obtained from a block diagonal Schur decomposition of the fol-
lowing Hamiltonian matrix [42]
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In Eq. (4), E0, E1 and E2 are the coefficient matrices that depend
on the geometry and material properties of a polygon [42]
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where B1(η) and B2(η) are the standard SBFEM strain-displacement
matrices, |J| is the determinant of the Jacobian matrix required for
coordinate transformation and D is the material constitutive matrix.

Fig. 1. Scaled boundary coordinate system on a generic star convex polygon.
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