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A B S T R A C T

The finite cover system plays a critical role in Numerical Manifold Method (NMM) for the unified sim-
ulation of models from continuum to discontinuum. However, large amounts of computational geometries
are usually involved in the traditional finite cover generation algorithm, which makes the process of finite
cover generation a time consuming and error prone task and limits the wide applications of NMM. To
achieve a simple and robust finite cover generation algorithm for NMM, a new method for the genera-
tion of integration cells including closed convex or concave polygons was developed in this paper as an
important supplement to our recent work [Cai et al., 2013]. In the newly developed integration cells gen-
eration algorithm, with the help of pre-defined symbol functions and 3 different matrixes, nodes including
vertexes and intersection points belonging to a same integration cell were first grouped together, and
then listed in a anticlockwise manner to finally form the closed circuit. In this way, large amounts of com-
putational geometries employed in the identification of integration cells were replaced with computational
algebras. Several benchmarks were simulated to investigate the accuracy of the proposed integration cells
generation algorithm and to demonstrate the robustness of NMM.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The manners in which the additional degrees of freedom (DOFs)
are inserted to simulate the discontinuities in displacement field
are core properties for different numerical methods proposed to sim-
ulate cracks, like XFEM [2–5], meshless method [6–10], NMM
[1,11,12], phantom node method [13–16], multiscale modeling
method [17], and phase field method [18,19], etc. For NMM, which
was proposed in 1991 by Dr. Shi [20,21], a dual covers system, in-
cluding Mathematical Covers (MCs) and Physical Covers (PCs), is
employed to insert additional DOFs for the simulation of models
from continuum to discontinuum. Among them, the MCs are in-
dependent of the interior boundaries of the analysis domains and
are kept unchanged during the whole computation process. The
weight functions and the physical cover functions with DOFs are
defined over MCs and PCs, respectively. While the interior bound-
aries exist in the analysis domain, the PCs would be cut to form sub-
PCs where new physical cover functions with DOFs are added
correspondingly to capture the displacement discontinuity. The dual
cover system and the partition of PCs proposed in NMM make the
insertion of the DOFs such a natural and concise manner. As a result,

both simple cracks as well as complex cracks, especially like inter-
secting cracks and branched cracks, could be simulated in a unified
framework. For more details of NMM, we refer to reference 22.

The finite cover system is critical for NMM to capture the dis-
continuity. However, the adopted finite cover system also gives rise
to the generation of finite cover system for which a simple and stable
computer algorithm is difficult to design and limits the wide ap-
plication of NMM. Furthermore, similar as the condition in XFEM
or phantom node method, cracks are allowed to arbitrarily pass
through the mathematical elements (MMEs) in NMM, and the stan-
dard Gaussian quadrature rule, which is used for the numerical
integration over continuous field function, may not adequately in-
tegrate the discontinuous field. To overcome this difficulty, several
methods, such as tessellation approach [4,23,24], equivalent poly-
nomials [25], and approach using moment fitting equations [26],
have been proposed. A good review of these integration methods
is given in Sudhakar and Wall [27]. Among these methods, tessel-
lation approach and the moment fitting equations seem to be the
most accurate and robust ways to evaluate the stiffness matrix es-
pecially for element arbitrarily cut by multiple cracks. For the
implementation of these integration methods, the integration cells
(closed convex or concave polygons) should be formed at first. There-
fore, a simple and robust computer algorithm to implement the
generation of finite cover system including the partition of PCs and
the generation of integration cells is necessary for the practical ap-
plication of NMM in engineering. To solve this problem, in the work
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of Chen and Li [28], the mathematical mesh was regarded as the
union of MMEs rather than MCs, and the finite cover system could
be generated much more efficient.

For the generation (partition) of PCs, a simple and steady algo-
rithm based on the symbol function was proposed in our recent work
[1]. The computational geometries that are time consuming and error
prone are largely avoided in this algorithm, and with the help of
the value of symbol function, physical covers could be generated
and connected to the corresponding ManiFold Elements (MFEs) in
a robust manner.

Following our recent work [1], for the generation of integra-
tion cells, a robust algorithm is proposed based on the same symbol
function in the paper. Large amounts of computational geom-
etries involved in the process of ‘identification of close bounded
polygon’ were replaced with computational algebras, which could
be implemented obviously in a more stable manner.

With the generation algorithms for both of the PCs as well as
the integration cells, the whole process of the generation of finite
cover system of the NMM for the unified analysis of continuum and
discontinuum problems could be consistently implemented in a
simple and stable way. In addition, although the generation of the
integration cells is proposed in the framework of NMM, this algo-
rithm could also be used in the other numerical methods, like XFEM,
phantom node method and Partition of Unity Method [29,30], which
usually allow the cracks to pass through the interpolation ele-
ments. The proposed algorithm could offer a strong technique
support for these methods and make its implementation more stable.

We start the investigation first with a brief introduction of NMM
in section 2. This discussion will explain the basic manner in which
the new physical covers and the new integration cells are gener-
ated, respectively. The natural and straightforward way to capture
the discontinuous displacement field between cracks will also be
highlighted in this section. The procedure of the new integration
cells generation algorithm proposed in this paper will be intro-
duced in detail in section 3. In order to show the consistency and
to have a better realization of the whole generation process of finite
cover system, the generation of the physical cover system pro-
posed recently will be introduced after a slight revision in section
3 as well. In section 4, a comparison between NMM and FEM was
first implemented based on a benchmark to investigate the accu-
racy and rate of convergence of the proposed numerical integration
cells generation algorithm. Then several stationary linear elastic prob-
lems with simple and complex cracks are calculated to demonstrate
the validity and the robustness of the proposed new integration cells
generation algorithm.

2. Expression of discontinuous field in NMM

2.1. Mathematical cover system and weight function

Consider a rectangular analysis domain Ω with 3 internal dis-
continuity boundaries, represented by 2 lines li, lj and a curve lk as
shown in Fig. 1. The intersection point of line li and lj is ij.

As mentioned above, a dual cover system including MCs and PCs
is employed by NMM for the unified simulation of continuum
problem and discontinuum problems. Specially, for the analysis of
discontinuous domain Ω, a mathematical cover system with 38
mathematical nodes was used (see Fig. 2). The mathematical cover
system could either be uniform mesh or finite element mesh. For
simplicity, the finite element mesh was used in this paper. As shown
in Fig. 2, the MC for the node n7 is the polygon with n1, n2, n3, n4,
n5, n6 as its vertex, the MC for the node n14 is the polygon with n8,
n9, n10, n11, n12, n13 as its vertex, while the MC for the node n17 is
the polygon with n18, n10, n11, n15, n16 as its vertex. In NMM, the MCs
are independent of the internal boundaries and are kept un-
changed during the whole simulation.

The weight function ϕi i m=( )1 2 3, , … (where m = 38 for this case)
is defined over the mathematical cover MC i mi =( )1 2 3, , … . For
example, the weight function for mathematical cover MC14 is φ14,
the weight function for mathematical cover MC17 is φ17, and
the weight function for MC17 is φ7. The weight function
ϕi i m=( )1 2 3, , , ,… satisfies the delta property and partition of
unity. In NMM, the MMEs are the overlapping areas of MCs. For
example, the MME n12n13n14 is the overlapping part of the MCs in-
cluding MC12, MC13, and MC14 , while the MME n7n4n5 is the
overlapping part of the MCs including MC7, MC4, and MC5.

2.2. Physical cover system and physical cover function

Physical cover system is another cover system employed in NMM.
The domain of PCs is completely the same as its corresponding MCs
if it is not cut by cracks. For example, as shown in Fig. 3, the phys-
ical cover PC17 for node n17 is the same as its mathematical cover
MC17 which is the polygon with nodes n n n n n n16 15 11 10 18 17 as its ver-
texes. While a PC is completely cut by cracks, sub-PCs will partition
from this PC. For example, as indicated in Fig. 3, the PCs for the node
n7 are the 3 domains labeled as PC7

1, PC7
2, and PC7

3 and marked with
different colors for easy identification, while the PCs for the node
n14 are the domains labeled as PC14

1 , PC14
2 . It can be concluded that

for each PC cut by n cracks, no more than 2n sub-PCs are formed.
In NMM, physical cover function ui

l �x( ) is attached on each phys-
ical cover. For example, the physical cover function for physical cover
PC7

1 is ul
7 �x( ) , and the physical cover function for physical cover

PC14
1 is ul

141
�x( ), and for physical cover PC14

2 is ul
142

�x( ). The physical

Fig. 1. Schematic representation of a solid body Ω with internal discontinuity bound-
aries li, lj and lk.

Fig. 2. Mathematical cover system adopted by NMM for the analysis of solid body
Ω.
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