Polyhedron 140 (2018) 122-128

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Refining the anchor: Optimizing the performance of cyclometallated ruthenium(II) dyes in p-type dye sensitized solar cells

ABSTRACT

Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland

Nathalie Marinakis, Cedric Wobill, Edwin C. Constable, Catherine E. Housecroft*

A comparison of the performances of p-type dye sensitized solar cells (DSCs) sensitized by three cyclometallated ruthenium(II) dyes differing in their anchoring domains is presented. The dyes are [Ru(bpy)₂(H1)] (H₃1 = (4-(2-phenylpyridin-4-yl)phenyl)phosphonic acid) and the salts [ⁿBu₄N] [Ru(bpy)₂(1)] and [Ru(bpy)₂(H2)][PF₆] (H₂2 = (4-(2-phenylpyridin-4-yl)phenyl)carboxylic acid). DSCs were fabricated with FTO/NiO working electrodes and either an I⁻/I₃/MeCN or I⁻/I₃/MeCN:EtCN (3:1 by volume) electrolyte. The results confirm the higher performance of dyes with a phosphonate versus carboxylic acid anchor, and reveal that [Ru(bpy)₂(H1)] (J_{SC} = 3.24 mA cm⁻² and η = 0.116%) performs better than [Ru(bpy)₂(1)]⁻. Electrochemical impedance spectroscopy (EIS) shows that a DSC with [Ru(bpy)₂(H1)] offers the lowest transport and recombination resistances and the shortest hole lifetime and diffusion length.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

There is significant interest in the use of cyclometallated ruthenium(II) complexes as sensitizers in dye-sensitized solar cells (DSCs) [1-4]. The special attraction of $[Ru(N^N)_2(C^N)]^+$ complexes (N^N = bidentate N,N'-ligand, C^N = cyclometallated C,N-ligand) as dyes originates in the orbital characteristics of the frontier molecular orbitals (HOMO and LUMO). The HOMO is localized on the Ru/ C^N domain while the LUMO possesses N^N character [5] and therefore, the electronic properties of the complex can be modulated through functionalization of the C^N and C^N ligands. The discrete partitioning of N^N and {(C^N)₂Ir} orbital character between the HOMO and LUMO in $[Ir(C^N)_2(N^N)]^+$ complexes has been exploited for the optimization of cyclometallated iridium(III) dyes in p-type DSCs [6]. Structurally, sensitizers for DSCs are characterized by the anchoring group (commonly a carboxylic or phosphonic acid) which binds the dye to the semiconductor surface [7] and ancillary groups which optimize electron transfer across the dye. Moving the anchor from the N^N to the C^N ligand in a $[Ru(N^N)_2(C^N)]^+$ cation converts the complex from being a sensitizer for an n-type to a p-type DSC [8-13]. A related p-type DSC sensitizer containing an {Ru^{II}(N^N^N)(C^N^N)} core in which

* Corresponding author. *E-mail address:* catherine.housecroft@unibas.ch (C.E. Housecroft). the cyclometallated ligand bears an anchoring carboxylic acid has also been reported [14].

Although cyclometallated ruthenium dyes (both for n-type and p-type DSCs) typically contain a carboxylic acid anchor [1,3,8–18] we have focused on the use of a phosphonic acids, based on the superior performance with respect to carboxylic acid anchors in n-type copper-sensitized DSCs [19]. Our initial investigations of p-type DSCs have used the zwitterionic dye $[Ru(bpy)_2(H1)]$ (Scheme 1). Even though the structure of this dye has not been optimized, p-type DSCs containing FTO/NiO photocathodes sensitized with $[Ru(bpy)_2(H1)]$ combined with an $I^-/I_3^-/MeCN$ electrolyte show short-circuit current densities (I_{SC}) of between 3.38 and 4.13 mA cm⁻² and photoconversion efficiencies (η) of between 0.116 and 0.139% [12, 20]. This sensitizer outperforms the reference dye P1 [12,21] (Scheme 2). The long-term stability of the DSC can be enhanced by changing the electrolyte solvent composition to a mixture of MeCN and EtCN (3:1 volume ratio), although at the expense of J_{SC} and η [20]. The performances of DSCs with $[Ru(bpy)_2(H1)]$ are comparable to that of a DSC containing the more sophisticated dye shown in Scheme 3 (J_{SC} = 3.43 mA cm⁻² and η = 0.104%) which is currently one of the best-performing cyclometallated ruthenium(II) dyes in p-type DSCs [8]. We now compare the performances of DSCs sensitized with [Ru(bpy)₂(H1)] with those containing the carboxylic acid anchored dye $[Ru(bpy)_2(H2)][PF_6]$ (Scheme 1) and also investigate the effects of deprotonating $[Ru(bpy)_2(H1)]$ and using $[^nBu_4N][Ru(bpy)_2(1)]$ (Scheme 1) as the dye.

ARTICLE INFO

Received 10 October 2017

Accepted 12 December 2017

Available online 17 December 2017

p-Type dye sensitized solar cell

Article history:

Keywords.

Ruthenium

Cyclometallation

Anchoring group

Phosphonic acid

[Ru(bpy)₂(H**2**)][PF₆]

Scheme 1. Structures of the three dyes in this investigation.

2. Experimental

2.1. General

¹H and ³¹P NMR spectra were recorded on a Bruker Avance III-500 spectrometer at 295 K. The ¹H chemical shifts were referenced with respect to residual solvent peaks (δ TMS = 0), ¹¹B with respect to BF₃·Et₂O, and ³¹P with respect to 85% aqueous H₃PO₄. Mass spectra (LC–ESI-MS) were measured using a combination of Shimadzu (LC) and Bruker AmaZon X instruments.

 $[Ru(bpy)_2(H1)]$ and $[Ru(bpy)_2(H2)][PF_6]$ were prepared as previously reported [12].

2.2. [ⁿBu₄N][Ru(bpy)₂(**1**)]

[Ru(bpy)₂(H1)] (5.00 mg, 6.92 µmol, 1.0 eq.) was dissolved in MeOH (5.0 mL) and ⁿBu₄NOH (4.49 mg, 17.3 µmol, 2.5 eq.) was added as a 0.1 M solution in MeOH. The solution was stirred at room temperature for 2 h, after which the solvent was removed under vacuum to leave [ⁿBu₄N][Ru(bpy)₂(1)] with excess ⁿBu₄NOH. Attempts to remove the latter were unsuccessful (see text). ¹H NMR (500 MHz, CD₃OD) ¹H NMR (500 MHz, CD₃OD) δ /ppm 8.63

Scheme 2. The structure of the reference p-type sensitizer P1.

Scheme 3. A state-of-the-art p-type cyclometallated ruthenium(II) dye reported by Wu and coworkers [8].

(dt, *J* = 8.3, 1.0 Hz, 1H, H^{A3}), 8.54 (m, 1H, H^{B3}), 8.47 (m, 1H, H^{C3}), 8.44 (m, 1H, H^{D3}), 8.31 (d, *J* = 2.0 Hz, 1H, H^{E3}), 8.17 (ddd, *J* = 5.7, 1.6, 0.7 Hz, 1H, H^{B6}), 8.07–7.97 (overlapping m, 4H, H^{A4+F3+} two of ^{C4/B4/D4/C6}), 7.92 (overlapping m, 2H, H^{D6+A6}), 7.86 (m, 2H, H^{C2}), 7.79 (overlapping m, 2H, H^{two of C4/B4/D4/C6}), 7.71 (m, 2H, H^{C3}), 7.59 (dd, *J* = 6.0, 0.7 Hz, 1H, H^{E6}), 7.49 (ddd, *J* = 7.6, 5.4, 1.2 Hz, 1H, H^{A5}), 7.30–7.22 (overlapping m, 4H, H^{B5+C5+D5+E5}), 6.92 (ddd, *J* = 7.8, 7.2, 1.3 Hz, 1H, H^{F4}), 6.82 (td, *J* = 7.3, 1.3 Hz, 1H, H^{F5}), 6.45 (m, 2H, H^{F6}). ³¹P{¹H} NMR (162 MHz, CD₃OD) δ /ppm + 10.2. LC–ESI-MS *m/z*: 242.3 [ⁿBu₄N]⁺ (calc. 242.3), 724.2 [M+2H]⁺ (calc. 724.1). Satisfactory elemental analysis could not be obtained: see text.

2.3. DSCs

Working NiO electrodes were prepared in-house. An FTO glass plate (Solaronix TCO22-7, 2.2 mm thickness, sheet resistance = 7 Ω square⁻¹) was cleaned by sonicating in surfactant (2% in milliQ water), and rinsed with milliQ water and EtOH. The surface was activated in a UV-O₃ system (Model 256–220, Jelight Company Inc) for 20 min. The plate was then dipped five times into a solution of [Ni(acac)₂] (ACROS) in MeCN (0.5 mM) and air dried after each dipping. A layer of NiO paste (Ni-Nanoxide N/SP, Solaronix) was screen-printed (90 T, Serilith AG, Switzerland) onto the

Download English Version:

https://daneshyari.com/en/article/7763704

Download Persian Version:

https://daneshyari.com/article/7763704

Daneshyari.com