ELSEVIER

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Molecular structures of cobalt complexes of 2-aza-2-[p-methylbenzyl]-5,10,15,20-tetraphenyl-21-carbaporphyrin: [Co(2-NCH₂-p-C₆H₄CH₃-21-m-CH₂C₆H₄CH₃NCTPP)L] (L = Cl⁻, N*CS⁻)

Chun-Yeh Lin^a, Jyh-Horung Chen^{a,*}, Jo-Yu Tung^{b,*}

- ^a Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
- ^b Department of Occupational Safety and Health, Chung Hwai University of Medical Technology, Tainan 717, Taiwan

ARTICLE INFO

Article history: Received 28 August 2017 Accepted 25 October 2017 Available online 22 November 2017

Keywords: X-ray diffraction Zero-field splitting Magnetic anisotropy Cobalt(II) N-confused porphyrin SQUID

ABSTRACT

Two experimentally well characterized four-coordinate complexes of the general formula [Co(2-NCH₂-p-C₆H₄CH₃-21-m-CH₂C₆H₄CH₃NCTPP)L] (with L = Cl⁻ and N*CS⁻ for **3** and **4**) are considered for this study. The crystal structures of the paramagnetic chloro(2-aza-2-[p-methyl benzyl]-5,10,15,20-tetraphenyl-21-m-xylyl-21-carbaporphyrinato-N,N',N'') cobalt(II) octane solvate [Co(2-NCH₂-p-C₆H₄CH₃-21-m-CH₂C₆H₄CH₃NCTPP)Cl]-0.5C₈H₁₈ (**3**·0.5 C₈H₁₈) and thiocyanato-N-(2-aza-2-[p-methylbenzyl]-5,10,15,20-tetraphenyl-21-m-xylyl-21-carbaporphyrinato-N,N',N'') cobalt(II) [Co(2-NCH₂-p-C₆H₄CH₃-21-m-CH₂C₆H₄CH₃NCTPP)(NCS)] (**4**) were established. The geometry around the Co²⁺ ion in **3**·0.5 C₈H₁₈ (or **4**) is a distorted tetrahedron, with C_{2ν} symmetry. The magnitude of the zero-field splitting (ZFS) parameter (D) was reported to change from 44.5 cm⁻¹ in **3** to 30.0 cm⁻¹ in **4** through DC magnetic susceptibility determinations. The |D| value can be related to the magnitude of the ligand-field splitting parameter of the axial k-donating Cl⁻ ligand of **3** and the axial π -accepting NCS⁻ ligand of **4** at the cobalt sites.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

An N-confused porphyrin (NCP), first isolated in 1994 independently by Furuta [1] and Latos-Grazynski [2], is a porphyrin isomer with an inverted pyrrole ring. There are three main reaction sites in the confused pyrrole ring, including external nitrogen (2-N), external carbon (3-C) and internal carbon (21-C) atoms [1-4]. At the external nitrogen atom of NCP(2-N), an electrophilic reaction can take place yielding alkylated products [1-4]. Lin et al. [5] reported the synthesis of 2-aza-2-[p-methylbenzyl]-5,10,15,20-tetraphenyl-21-carbaporphyrin [2-NCH₂-p-C₆H₄-CH₃NCTPPH] (1). The free base 1 can provide N₃ or N₃C coordinated sites and these are effectively utilized in generating the nickel complex (2-azo-2-[p-methylbenzyl]-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N") nickel (II), [Ni(2-NCH₂-p-C₆H₄-CH₃NCTPP)] (2), with an N₃C coordination core [5]. Several X-ray structures of four-coordinate cobalt(II) Nconfused porphyrin complexes and their zero-field splitting (ZFS) parameters (D) have been reported [6–8], wherein the axial ligand in these cobalt(II) complexes is the Cl⁻ ion. The magnetic anisotropy is quantified in terms of the ZFS parameter (D), which appears to be sensitive toward ligand substitution [9-12]. Furthermore, Cl⁻ (with a weaker ligand field splitting parameter) and N*CS- (with stronger ligand field splitting parameter) ions were selected as axial ligands in this study [9]. In order to investigate the effect of the ligands for tuning the magnetic anisotropy in Co (II) 2-N substituted N-confused porphyrin complexes, we have extended our studies to the insertion of cobalt ions into 1, leading to the cobalt(II) complexes chloro(2-aza-2-[p-methylbenzyl]-5,10,15,20-tetraphenyl-21-*m*-xylyl-21-carbaporphyrinato-N,N',N") cobalt(II) octane solvate, [Co(2-NCH₂-p-C₆H₄CH₃-21-m-CH₂C₆H₄-CH₃NCTPP)Cl]·0.5C₈H₁₈ (**3**·0.5C₈H₁₈), and thiocyanato-N-(2-aza-2-[p-methylbenzyl]-5,10,15,20-tetraphenyl-21-m-xylyl-21-carbaporphyrinato-N,N',N") cobalt(II), [Co(2-NCH₂-p-C₆H₄CH₃-21-m-CH₂C₆H₄CH₃NCTPP)(NCS)] (4) (Scheme 1). Complexes 3 and 4 are chosen as the targets for magnetic property measurements. To examine the effect of the Cl⁻(3) and NCS⁻(4) ions in the axial positions on the magnetic anisotropy of complexes 3 and 4, the ZFS parameters (D) of these complexes were estimated using DC magnetic susceptibility measurements. For this study, the diamagnetic compound 2 is used as a diamagnetic subtraction factor for paramagnetic compounds 3 and 4 in the DC magnetic susceptibility determinations. In other systems, Krzystek and coworkers reported

^{*} Corresponding authors. Fax: +886 422862547 (J.-H. Chen), +886 62894028 (J.-Y. Tung).

E-mail addresses: ryan556650@gmail.com (C.-Y. Lin), JyhHChen@dragon.nchu.edu.tw (J.-H. Chen), joyuting@mail.hwai.edu.tw (J.-Y. Tung).

Scheme 1. Synthesis of **3** and **4** (the numbering of **1** on the far left is used for the nomenclature of the compounds, and this numbering scheme is consistent with that reported in the literature).

a high-frequency and high-field EPR investigation of manganese N-confused porphyrins [13].

2. Experimental

2.1. Preparation of 3

A mixture of 1 (0.0360 g, 0.05 mmol) and CoCl₂·6H₂O (0.0476 g, 0.2 mmol) in a mix of CH₃CN (5 ml) and m-xylene (30 ml) was refluxed for 12 h (Scheme 1) [5]. After concentrating the reaction mixture, the residue was dissolved in CH₂Cl₂ (5 ml) and filtered. The filtrate was then concentrated and the residue was purified over a silica gel column (Si 60, 40-63 µm, 10 g) using EtOAc/CH₂- Cl_2 [1:99 (v/v)] as the eluent to yield a brown-yellow solution of 3. Removal of the solvent gave 3 as a brown-yellow solid (0.0094 g, 0.0103 mmol, 21%), which was redissolved in CH₂Cl₂ and layered with octane [octane/CH₂CI₂ = 2:1 (v/v)] to afford brown crystals for single-crystal X-ray analysis: M.p. 302 °C, MS (ESI), m/z (assignment, rel. intensity): 880.3 ([M-Cl]⁺, 100%). Anal. Calc. for C₆₀H₄₅ClCoN₄·0.27C₈H₁₈: C, 78.75; H, 5.31; N, 5.91. Found: C, 78.93; H, 5.49; N, 6.20%. UV-Vis-NIR spectrum, λ (nm) [$\epsilon \times 10^{-2}$, M⁻¹ cm⁻¹] in CH₂Cl₂: 472 (790), 585 (27), 718 (98), 783 (216), 1086 (1.9), 1282 (1.9).

2.2. Preparation of 4

A mixture of **1** (0.036 g, 0.05 mmol) and $Co(SCN)_2$ (0.035 g, 0.2 mmol) was refluxed in a mix of CH_3CN (5 ml) and m-xylene (30 ml) for 12 h (Scheme 1). After concentrating the reaction mixture, the residue was dissolved in CH_2Cl_2 (5 ml) and filtered. The filtrate was then concentrated and the residue was purified over a silica gel column (Si-60, 40–63 μ m, 10 g) using CH_2Cl_2 as the eluent to yield a brown–green solution of **4**. Removal of the solvent gave **4** as a brown–green solid (0.0072 g, 0.0077 mmol, 15%), which was redis-

solved in CH₂Cl₂ and layered with octane [octane/CH₂Cl₂ = 2:1 (v/v)] to afford brown crystals for single-crystal X-ray analysis: M.p. 352 °C, MS (ESI), m/z (assignment, rel. intensity): 801.2 ([M–NCS–C₆H₆–H]⁺, 100%), 880.1 ([M–NCS]⁺, 90.22%), 938.1 ([M–H]⁺, 8.72%). *Anal.* Calc. for C₆₁H₄₅CoN₅S·1.90CH₃CN: C, 76.52; H, 5.02; N, 9.50. Found: C, 76.29; H, 5.02; N, 9.28%. UV–Vis–NIR spectrum, λ (nm) [ε × 10⁻², M⁻¹ cm⁻¹] in CH₂Cl₂: 465 (671), 590 (34), 693 (80), 765 (216), 1060 (1.5), 1237 (1.7).

2.3. Magnetic susceptibility measurements

The solid-state magnetic susceptibility was measured under helium on a Quantum Design MPMS7 SQUID susceptometer from 2 to 300 K at a field of 5 kG. The sample was held in a Kel-F bucket. The bucket had been calibrated independently at the same field and temperature. The raw data for **3** and **4** were corrected for molecular diamagnetism. The diamagnetic contribution of samples of **3** and **4** was measured from an analogous diamagnetic metal complex, that is **2**. Details of the diamagnetic correction that were made can be found in the reference by Drago [14].

2.4. Spectroscopy

Elemental analyses were carried out on an Elementar Vario EL cube analyzer. The mass spectra MS(ESI) were recorded on a Thermo Finnigan TSQ Quantum mass spectrometer with an ESI source. UV–Vis spectra were recorded at 300 K on a Varian Cary 60 Conc UV–Visible spectrophotometer. UV–Vis–NIR spectra were recorded at 300 K on a Shimadzu UV–3600 UV–Vis–NIR spectrophotometer.

Download English Version:

https://daneshyari.com/en/article/7763924

Download Persian Version:

https://daneshyari.com/article/7763924

<u>Daneshyari.com</u>