Polyhedron 139 (2018) 289-295

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Two one-dimensional lanthanide compounds with pentagonal bipyramidal Er^{III} centers showing slow magnetic relaxation

School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China

Xing-Cai Huang*, Shi-Chang Yan, Cheng-Long Ji, Zi-Yi Qi, Yi-Ming Guo, Jian-Qing Tao*

ARTICLE INFO

Article history: Received 15 September 2017 Accepted 2 November 2017 Available online 10 November 2017

Keywords: Er^{III} Bulky anion One-dimensional chain Pentagonal bipyramid Slow magnetic relaxation

ABSTRACT

Two one-dimensional (1D) erbium compounds based on the pentadentate ligand N1, N3-bis(3-methoxysalicylidene) diethylenetriamine (H₂valdien) and a bulky anion diphenyl phosphate ([(PhO)₂PO₂]⁻) of [ErNa(valdien)Cl((PhO)₂PO₂)]_n (1) and [Er(valdien)((PhO)₂PO₂)]_n (2) have been synthe-sized and characterized by single-crystal X-ray diffraction analysis. For both compounds 1 and 2, each Er^{III} ion adopts a seven-coordinate ligand set and has a distorted pentagonal bipyramidal geometry with pseudo- D_{5h} symmetry. The Er^{III} centers are bridged by Cl and/or diphenyl phosphate anions to form 1D chains along the b axis. Furthermore, detailed magnetic measurements indicate that both compounds 1 and 2 exhibit field-induced slow magnetic relaxation behavior. The energy barrier U_{eff} of compound 1 was determined to be (14.19 ± 0.73) cm⁻¹ ((20.41 ± 1.05) K) for only Orbach process. And the spin–lattice relaxation of both Raman and Orbach processes was considered for compound 1 and the observed energy barrier in whole region was (36.01 ± 5.03) cm⁻¹ ((51.82 ± 7.23) K). These results demonstrated that the lanthanide compounds with pentagonal bipyramidal geometry (pseudo- D_{5h}) could be effectively designed and synthesized by using a suitable pentadentate ligand.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The rocketing development in the area of lanthanide singlemolecule magnets (SMMs) has been encouraged by their promising applications in information storage [1] and spintronic devices [2]. Despite many mono-and polynuclear lanthanide SMMs have been reported so far, great interest still remains constrained to heavy lanthanide ions, such as Dy^{III}, Tb^{III}, Er^{III} and Ho^{III}, due to their strong spin-orbit coupling and leading to large magnetic anisotropy [3]. Till now, monometallic SMMs (or called single-ion magnets (SIMs)) with specific symmetry related to single-ion magnetic anisotropy have become the requirement and criterion to gain the large energy barriers (U_{eff}) and high blocking temperature (T_B) . A striking approach to gain the excellent magnetic properties can be achieved by means of controlling the symmetry of simple monometallic lanthanide compounds. The following illustration provides some typical examples, mononuclear Tb porphyrins compounds with pseudo- D_{4d} symmetry and Tb radical-bridged compounds have the large $U_{\rm eff}$ of 652 cm⁻¹ [4] and $T_{\rm B}$ of 14 K [5] and keep the record for a long time. Recently, Dy SIMs with pentagonal bipyramid geometry (D_{5h}) have the energy barrier exceeded 1000

K (1815 K) [6,7] and the blocking temperature of 20 K [8]. Remarkably, to date, an organometallic compound $[Dy(Cp^{ttt})_2][B(C_6F_5)_4]$ exhibits magnetic hysteresis at temperatures of up to 60 K [9,10]. Indeed, Er^{III} ion is also a Kramers ion like Dy^{III} with a I = 15/2ground state, which also has large magnetic anisotropy. For instance, the POM-containing compounds $[Er(W_5O_{18})_2]^{9-}$ and [Er $(SiW_{11}O_{39})_2]^{13-}$ with D_{4d} symmetry show SMM properties [11]. And the organometallic sandwich compounds with COT systems, [(Cp*)Er(COT)] was the first organometallic Er^{III} compounds with high performance SIM behavior [12], $[Er(COT)_2]^-$ has been demonstrated to be the blocking temperature at 10 K [13], [Er(COT")] exhibits the hysteresis loops up to 8 K with an energy barrier of 187(1) K [14], and [(C₅H₅BH)Er(COT)] obtained the highest energy barrier (300 cm⁻¹) among all the reported erbium SIMs [15]. The exceptional slow relaxation observed for the compounds can be rationalized by considering that large conjugated π -system formed by the [Cp*]⁻, C₅H₅BH⁻, COT²⁻ and COT^{"2-} ligands creates a strong equatorial ligand field to stabilize $m_1 = \pm 15/2$. In addition, a series of Er^{III} silazanes compounds with C_{3v} and D_{3h} symmetry, such as $Er(N(SiMe_3)_2)_3$ with a trigonal planar geometry [16], [Li(THF)_4[Er [N(SiMe₃)₂]₃Cl}]·2THF with a trigonal–pyramidal geometry [17], also showed high performance of SMM behaviors under a zero dc field. Furthermore, the air-stable Er complexes based on the Schiff-base ligands such as $[Er(HL)_2(NO_3)_3]$ [18] and $[Er(N_5)_2]^{3+}$

^{*} Corresponding authors.

E-mail addresses: huangxc82@126.com (X.-C. Huang), tjqyctu@hotmail.com (J.-Q. Tao).

[19] also show the filed-induced SIM behavior. A series of airstable $Er^{III} \beta$ -diketonate complexes [20–22] and a layered erbium phosphonate [Er(notpH₄)(H₂O)]ClO₄·3H₂O [23] show the filedinduced SIM behavior and luminescent properties, which provide an approach to design and obtain multifunctional molecule-based materials combining magnetism with luminescence, and other properties.

As mentioned above, the mononuclear lanthanide compounds with an appropriate spherical coordination geometry showed the slow magnetic relaxation behavior. It is worth noting that the specific symmetry of the crystal field could stabilize the m_1 ground state. Consequently, it has a great possibility to gain the SIM behavior by controlling the symmetry of the lanthanide centers, especially for the simple mononuclear lanthanide compounds. Generally speaking, the coordination number of lanthanide complexes are eight-coordinate or more. Importantly, the mononuclear seven-coordinated lanthanide compounds with pentagonal bipyramidal geometry have the great potentials for constructing suitable crystal filed environment to design the SIMs. To gain a pentagonal bipyramidal geometry (seven-coordinate), one of the effective synthetic strategy is to design a nearly coplanar pentadentate ligand with fruitful O atoms.

Recently, we reported a series of 1D Ln^{III} coordination polymers with pentagonal bipyramidal Ln^{III} centers by using a simple pentadentate ligand and carefully studied the SMM behaviors of the Dy^{III} compounds [24]. Herein, we continue to focus on the rare Er^{III} compounds compare with the Dy^{III} SMMs. Interestingly enough, the two 1D Er^{III} coordination polymers also display SMM behavior.

2. Materials and methods

2.1. Materials

All preparations and manipulations were performed under aerobic conditions. The ligand H₂valdien (H₂valdien = N1, N3-bis(3methoxysalicylidene) diethylenetriamine) was prepared according to a method described previously [25].

Preparation of Na(PhO)₂PO₂. Diphenyl phosphate (PhO)₂PO₂H (10 mmol, 0.25 g) was added to the solution of NaOH (10 mmol, 0.4 g) in MeOH (20 mL), then the mixture was vigorously stirred for 2 h at room temperature, concentrated up to dryness under reduced pressure and then washed several times with MeOH and Et₂O to give the white solid (Na(PhO)₂PO₂) without further purification for use directly. Yield. 96%.

2.2. Preparation of compounds 1 and 2

 $[\text{ErNa}(\text{valdien})\text{Cl}((\text{PhO})_2\text{PO}_2)]_n$ (1). To a solution of H₂valdien (0.15 mmol, 55 mg), Et₃N (0.30 mmol, 41.8 µL) in MeOH (3 mL) was added a MeOH solution (2 mL) of ErCl₃·6H₂O (0.15 mmol, 57 mg). The solution was stirred for 3 min, and then a MeOH solution (2 mL) of Na(PhO)₂PO₂ (0.15 mmol, 40.5 mg) was added to the mixture. The resulting clear yellow solution was stirred briefly and filtered. The yellow block crystals suitable for X-ray diffraction studies were obtained by slow diffusion of isopropyl ether vapor into the yellow solution after 3 days. Yield: ca. 45%. Elemental analysis (%) calculated for C₃₂H₃₃ClErN₃NaO₈P: C, 45.52; H, 3.94; N, 4.98. Found: C, 45.48; H, 3.99; N, 4.96. IR (KBr, cm⁻¹): 3439 (m), 3203 (w), 2918 (w), 1628 (vs), 1602 (w), 1489 (w), 1471 (s), 1455 (s), 1440 (w), 1252 (vs), 1220 (s), 1099 (s), 1079 (m), 923 (m), 910 (s), 901 (m), 899 (m), 750 (m), 742 (s), 626 (w), 534 (m).

 $[\text{Er}(\text{valdien})((\text{PhO})_2\text{PO}_2)]_n$ (2). To a solution of H₂valdien (0.15) mmol, 55 mg), Et₃N (0.30 mmol, 41.8 µL) and ErCl₃·6H₂O (0.15 mmol, 57 mg) in DMF/MeOH (5 mL, v/v = 1/4) was added a DMF/ MeOH (2 mL, v/v = 1/4) solution of (PhO)₂PO₂H (0.15 mmol, 37.5

mg) and Et₃N (0.15 mmol, 20.9 µL). The resulting clear yellow solution was stirred briefly and filtered. The yellow block crystals suitable for X-ray diffraction studies were obtained by slow diffusion

Table 1

Crystallographic data and structure refinement for 1 and 2.

Complex	1	2
Formula	ErNaC32H33N3O8ClP	ErC32H33N3O8P
$Mr [g mol^{-1}]$	844.28	785.84
CCDC number	1573742	1573743
Crystal size [mm ³]	$0.42\times0.36\times0.28$	$0.38 \times 0.18 \times 0.08$
Crystal system	orthorhombic	monoclinic
Space group	P bca	P 2 ₁ /c
a [Å]	22.078(3)	11.0338(15)
b [Å]	8.3227(14)	11.6491(16)
c [Å]	36.813(6)	27.321(3)
α[°]	90	90
β[°]	90	113.819(4)
γ[°]	90	90
V [Å ³]	6764.3(18)	3212.6(7)
Ζ	8	4
T [K]	293(2)	293(2)
$ ho_{ m calcd} [m g cm^{-3}]$	1.658	1.625
μ (Mo K $lpha$) [mm ⁻¹]	2.674	2.717
F(000)	3368	1572
θ range [°]	2.151-24.998	2.670-27.582
Refl. collected/unique	34633/5922	56915/7411
R(int)	0.0310	0.0236
$T_{\rm max}/T_{\rm min}$	0.5214/0.3997	0.7456/0.5987
Data/restraints/parameters	5921/0/426	7411/0/408
$R_1^{a}/wR_2^{b} (I > 2\sigma(I))$	0.0604/0.1156	0.0309/0.0770
R_1/wR_2 (all data)	0.0629/0.1169	0.0368/0.0908
GOF on F^2	1.063	1.068
Max/min [e Å ⁻³]	1.431/-2.905	1.681/-2.871

^a $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|.$ ^b $wR_2 = \{\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2] \}^{1/2}.$

Table 2						
Selected bond distances	[Å]	and angles	[°]	for 1	and 2	2.

1			
Er(1) - O(1)	2.183(5)	Er(1) - N(1)	2.486(7)
Er(1) - O(3)	2.205(5)	Er(1)-N(3)	2.504(8)
Er(1) - O(5)	2.248(5)	Er(1)-Cl(1)	2.606(2)
Er(1) - N(2)	2.459(7)	Er(1)Na(1)	3.605(4)
O(1)-Er(1)-O(3)	76.3(2)	O(3)-Er(1)-N(2)	139.6(2)
O(1)-Er(1)-O(5)	89.9(2)	O(5)-Er(1)-N(2)	79.72(19)
O(3)-Er(1)-O(5)	89.90(19)	O(1)-Er(1)-N(1)	73.8(2)
O(1)-Er(1)-N(2)	141.7(2)	O(3)-Er(1)-N(1)	150.0(2)
O(5)-Er(1)-N(1)	86.5(2)	O(5)-Er(1)-N(3)	86.6(2)
N(2)-Er(1)-N(1)	68.9(2)	N(2)-Er(1)-N(3)	67.7(2)
O(1)-Er(1)-N(3)	149.0(2)	N(1)-Er(1)-N(3)	136.5(2)
O(3)-Er(1)-N(3)	72.8(2)	O(1)-Er(1)-Cl(1)	103.20(16)
O(3)-Er(1)-Cl(1)	103.30(16)	N(1)-Er(1)-Cl(1)	87.05(18)
O(5)-Er(1)-Cl(1)	163.19(14)	N(3)-Er(1)-Cl(1)	87.42(19)
N(2)-Er(1)-Cl(1)	83.48(15)		
2			
2 Er(1)–O(3)	2.185(3)	Er(1)–N(3)	2.519(4)
2 Er(1)–O(3) Er(1)–O(1)	2.185(3) 2.196(3)	Er(1)–N(3) Er(1)–N(1)	2.519(4) 2.523(4)
2 Er(1)-O(3) Er(1)-O(1) Er(1)-O(6)#1	2.185(3) 2.196(3) 2.243(3)	Er(1)–N(3) Er(1)–N(1) Er(1)–N(2)	2.519(4) 2.523(4) 2.538(4)
2 Er(1)-O(3) Er(1)-O(1) Er(1)-O(6)#1 Er(1)-O(5)	2.185(3) 2.196(3) 2.243(3) 2.248(3)	Er(1)-N(3) Er(1)-N(1) Er(1)-N(2)	2.519(4) 2.523(4) 2.538(4)
$\begin{array}{c} 2 \\ Er(1)-O(3) \\ Er(1)-O(1) \\ Er(1)-O(6)\#1 \\ Er(1)-O(5) \\ O(3)-Er(1)-O(1) \end{array}$	2.185(3) 2.196(3) 2.243(3) 2.248(3) 81.43(13)	Er(1)–N(3) Er(1)–N(1) Er(1)–N(2) O(1)–Er(1)–O(5)	2.519(4) 2.523(4) 2.538(4) 92.01(13)
$\begin{array}{c} 2\\ Er(1)-O(3)\\ Er(1)-O(1)\\ Er(1)-O(6)\#1\\ Er(1)-O(5)\\ O(3)-Er(1)-O(1)\\ O(3)-Er(1)-O(6)\#1 \end{array}$	2.185(3) 2.196(3) 2.243(3) 2.248(3) 81.43(13) 92.22(13)	Er(1)-N(3) Er(1)-N(1) Er(1)-N(2) O(1)-Er(1)-O(5) O(6)#1-Er(1)-O(5)	2.519(4) 2.523(4) 2.538(4) 92.01(13) 163.67(12)
$\begin{array}{c} 2\\ Er(1)-O(3)\\ Er(1)-O(1)\\ Er(1)-O(6)\#1\\ Er(1)-O(5)\\ O(3)-Er(1)-O(1)\\ O(3)-Er(1)-O(6)\#1\\ O(1)-Er(1)-O(6)\#1 \end{array}$	2.185(3) 2.196(3) 2.243(3) 2.248(3) 81.43(13) 92.22(13) 101.14(13)	Er(1)-N(3) Er(1)-N(1) Er(1)-N(2) O(1)-Er(1)-O(5) O(6)#1-Er(1)-O(5) O(3)-Er(1)-N(3)	2.519(4) 2.523(4) 2.538(4) 92.01(13) 163.67(12) 72.86(13)
$\begin{array}{c} 2\\ Er(1)-O(3)\\ Er(1)-O(1)\\ Er(1)-O(6)\#1\\ Er(1)-O(5)\\ O(3)-Er(1)-O(1)\\ O(3)-Er(1)-O(6)\#1\\ O(1)-Er(1)-O(6)\#1\\ O(3)-Er(1)-O(5) \end{array}$	2.185(3) 2.196(3) 2.243(3) 2.248(3) 81.43(13) 92.22(13) 101.14(13) 99.34(13)	Er(1)-N(3) Er(1)-N(1) Er(1)-N(2) O(1)-Er(1)-O(5) O(6)#1-Er(1)-O(5) O(3)-Er(1)-N(3) O(1)-Er(1)-N(3) O(3)-Er(1)-N(3) O(3)-Er(1)-N(3)-Er(1)-N(3) O(3)-Er(1)-N(3)-Er(1)-N(3) O(3)-Er(1)-N(2.519(4) 2.523(4) 2.538(4) 92.01(13) 163.67(12) 72.86(13) 153.33(13)
$\begin{array}{c} 2\\ Er(1)-O(3)\\ Er(1)-O(1)\\ Er(1)-O(6)\#1\\ Er(1)-O(5)\\ O(3)-Er(1)-O(1)\\ O(3)-Er(1)-O(6)\#1\\ O(1)-Er(1)-O(6)\#1\\ O(3)-Er(1)-O(5)\\ O(6)\#1-Er(1)-N(3) \end{array}$	2.185(3) 2.196(3) 2.243(3) 2.248(3) 81.43(13) 92.22(13) 101.14(13) 99.34(13) 87.10(13)	Er(1)-N(3) Er(1)-N(1) Er(1)-N(2) O(1)-Er(1)-O(5) O(6)#1-Er(1)-O(5) O(3)-Er(1)-N(3) O(1)-Er(1)-N(3) O(6)#1-Er(1)-N(1) O(6)#1-Er(1)-N(1)-N(1) O(6)#1-Er(1)-N(1)-N(1) O(6)#1-Er(1)-N(1)-N(1)-N(1) O(6)+N(1)-N(1)-N(1)-N(1)-N(1)-N(1)-N(1)-N(1)-	2.519(4) 2.523(4) 2.538(4) 92.01(13) 163.67(12) 72.86(13) 153.33(13) 85.49(13)
$\begin{array}{c} 2\\ Er(1)-O(3)\\ Er(1)-O(6)\#1\\ Er(1)-O(6)\#1\\ Er(1)-O(5)\\ O(3)-Er(1)-O(1)\\ O(3)-Er(1)-O(6)\#1\\ O(1)-Er(1)-O(6)\#1\\ O(3)-Er(1)-O(5)\\ O(6)\#1-Er(1)-N(3)\\ O(5)-Er(1)-N(3) \end{array}$	$\begin{array}{c} 2.185(3)\\ 2.196(3)\\ 2.243(3)\\ 2.248(3)\\ 81.43(13)\\ 92.22(13)\\ 101.14(13)\\ 99.34(13)\\ 87.10(13)\\ 85.35(13) \end{array}$	$ \begin{array}{l} & Er(1)-N(3) \\ & Er(1)-N(1) \\ & Er(1)-N(2) \end{array} \\ \\ O(1)-Er(1)-O(5) \\ & O(6)\#1-Er(1)-O(5) \\ & O(3)-Er(1)-N(3) \\ & O(1)-Er(1)-N(3) \\ & O(6)\#1-Er(1)-N(1) \\ & O(5)-Er(1)-N(1) \end{array} $	2.519(4) 2.523(4) 2.538(4) 92.01(13) 163.67(12) 72.86(13) 153.33(13) 85.49(13) 89.47(13)
$\begin{array}{c} 2\\ Er(1)-O(3)\\ Er(1)-O(1)\\ Er(1)-O(6)\#1\\ Er(1)-O(5)\\ O(3)-Er(1)-O(1)\\ O(3)-Er(1)-O(6)\#1\\ O(1)-Er(1)-O(6)\#1\\ O(3)-Er(1)-O(5)\\ O(6)\#1-Er(1)-N(3)\\ O(5)-Er(1)-N(3)\\ O(3)-Er(1)-N(1)\\ \end{array}$	$\begin{array}{c} 2.185(3)\\ 2.196(3)\\ 2.243(3)\\ 2.248(3)\\ 81.43(13)\\ 92.22(13)\\ 101.14(13)\\ 99.34(13)\\ 87.10(13)\\ 85.35(13)\\ 152.30(13) \end{array}$	Er(1)-N(3) Er(1)-N(1) Er(1)-N(2) 0(1)-Er(1)-O(5) 0(6)#1-Er(1)-O(5) 0(3)-Er(1)-N(3) 0(1)-Er(1)-N(3) 0(6)#1-Er(1)-N(1) 0(5)-Er(1)-N(1) N(3)-Er(1)-N(1)	2.519(4) 2.523(4) 2.538(4) 92.01(13) 163.67(12) 72.86(13) 153.33(13) 85.49(13) 89.47(13) 134.38(14)
$\begin{array}{c} 2\\ Er(1)-O(3)\\ Er(1)-O(1)\\ Er(1)-O(6)\#1\\ Er(1)-O(5)\\ O(3)-Er(1)-O(6)\#1\\ O(1)-Er(1)-O(6)\#1\\ O(1)-Er(1)-O(6)\#1\\ O(3)-Er(1)-O(5)\\ O(6)\#1-Er(1)-N(3)\\ O(5)-Er(1)-N(3)\\ O(3)-Er(1)-N(1)\\ O(1)-Er(1)-N(1)\\ \end{array}$	2.185(3) 2.196(3) 2.243(3) 2.248(3) 81.43(13) 92.22(13) 101.14(13) 99.34(13) 87.10(13) 85.35(13) 152.30(13) 72.00(13)	$ \begin{array}{l} & Er(1)-N(3) \\ & Er(1)-N(1) \\ & Er(1)-N(2) \end{array} \\ \\ & O(1)-Er(1)-O(5) \\ & O(6)\#1-Er(1)-O(5) \\ & O(3)-Er(1)-N(3) \\ & O(1)-Er(1)-N(3) \\ & O(6)\#1-Er(1)-N(1) \\ & O(5)-Er(1)-N(1) \\ & O(3)-Er(1)-N(2) \end{array} $	2.519(4) 2.523(4) 2.538(4) 92.01(13) 163.67(12) 72.86(13) 153.33(13) 85.49(13) 89.47(13) 134.38(14) 140.32(14)
$\begin{array}{c} 2\\ Fr(1)-O(3)\\ Fr(1)-O(1)\\ Fr(1)-O(6)\#1\\ Fr(1)-O(5)\\ O(3)-Er(1)-O(6)\#1\\ O(3)-Er(1)-O(6)\#1\\ O(1)-Er(1)-O(6)\#1\\ O(3)-Er(1)-O(5)\\ O(6)\#1-Er(1)-N(3)\\ O(5)-Er(1)-N(3)\\ O(3)-Er(1)-N(1)\\ O(1)-Er(1)-N(1)\\ O(1)-Er(1)-N(2)\\ \end{array}$	$\begin{array}{c} 2.185(3)\\ 2.196(3)\\ 2.243(3)\\ 2.248(3)\\ 81.43(13)\\ 92.22(13)\\ 101.14(13)\\ 99.34(13)\\ 87.10(13)\\ 85.35(13)\\ 152.30(13)\\ 72.00(13)\\ 138.23(13) \end{array}$	$ \begin{array}{l} & \text{Er(1)-N(3)} \\ & \text{Er(1)-N(1)} \\ & \text{Er(1)-N(2)} \end{array} \\ & \text{O(1)-\text{Er(1)-O(5)} \\ & \text{O(6)\#1-\text{Er(1)-O(5)} \\ & \text{O(3)-\text{Er(1)-N(3)} \\ & \text{O(1)-\text{Er(1)-N(3)} \\ & \text{O(6)\#1-\text{Er(1)-N(1)} \\ & \text{O(5)-\text{Er(1)-N(1)} \\ & \text{N(3)-\text{Er(1)-N(1)} \\ & \text{O(3)-\text{Er(1)-N(2)} \\ & \text{N(3)-\text{Er(1)-N(2)} \\ \end{array} } \end{array} $	$\begin{array}{c} 2.519(4)\\ 2.523(4)\\ 2.538(4)\\ 92.01(13)\\ 163.67(12)\\ 72.86(13)\\ 153.33(13)\\ 85.49(13)\\ 89.47(13)\\ 134.38(14)\\ 140.32(14)\\ 67.66(14)\\ \end{array}$
$\begin{array}{c} 2\\ Fr(1)-O(3)\\ Fr(1)-O(1)\\ Fr(1)-O(6)\#1\\ Fr(1)-O(5)\\ O(3)-Fr(1)-O(6)\#1\\ O(3)-Fr(1)-O(6)\#1\\ O(3)-Fr(1)-O(6)\#1\\ O(3)-Fr(1)-O(5)\\ O(6)\#1-Fr(1)-N(3)\\ O(5)-Fr(1)-N(3)\\ O(3)-Fr(1)-N(1)\\ O(1)-Fr(1)-N(1)\\ O(1)-Fr(1)-N(2)\\ O(6)\#1-Fr(1)-N(2)\\ O(6)\#1-Fr(1)-N(2)\\ \end{array}$	$\begin{array}{c} 2.185(3)\\ 2.196(3)\\ 2.243(3)\\ 2.248(3)\\ 81.43(13)\\ 92.22(13)\\ 101.14(13)\\ 99.34(13)\\ 87.10(13)\\ 85.35(13)\\ 152.30(13)\\ 72.00(13)\\ 138.23(13)\\ 82.15(13)\\ \end{array}$	$ \begin{array}{l} & \text{Er(1)-N(3)} \\ & \text{Er(1)-N(1)} \\ & \text{Er(1)-N(2)} \end{array} \\ & \text{O(1)-Er(1)-O(5)} \\ & \text{O(6)\#1-Er(1)-O(5)} \\ & \text{O(3)-Er(1)-N(3)} \\ & \text{O(1)-Er(1)-N(3)} \\ & \text{O(6)\#1-Er(1)-N(1)} \\ & \text{O(6)\#1-Er(1)-N(1)} \\ & \text{O(3)-Er(1)-N(1)} \\ & \text{O(3)-Er(1)-N(2)} \\ & \text{N(3)-Er(1)-N(2)} \\ & \text{N(1)Er(1)-N(2)} \end{array} $	$\begin{array}{c} 2.519(4)\\ 2.523(4)\\ 2.538(4)\\ 92.01(13)\\ 163.67(12)\\ 72.86(13)\\ 153.33(13)\\ 85.49(13)\\ 89.47(13)\\ 134.38(14)\\ 140.32(14)\\ 67.66(14)\\ 66.74(14)\\ \end{array}$

Symmetry transformations used to generate equivalent atoms: #1 - x, y - 1/2, -z +3/2.

Download English Version:

https://daneshyari.com/en/article/7763963

Download Persian Version:

https://daneshyari.com/article/7763963

Daneshyari.com