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a b s t r a c t

Scaling failure in blast loaded structures is considered to be impossible with the known scaling laws
when using fracture-mechanics based (fracture toughness) considerations (Jones, 1989). We will show in
this research that scaling failure becomes possible when 2 alternative competing criteria are used,
namely: maximum normal stress to describe separation (cracking) and a strain energy density-based cri-
terion that describes adiabatic shear failure. Numerical simulations of two test-cases were carried out:
Failure of circular clamped plates under close range, air blast loading, and penetration experiments.

This study shows that both the prototype and small-scale model undergo scaling for those failure
criteria. This study presents a new alternative to the scaling of structural failure under dynamic loading
conditions, which is both simple and efficient.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

From an engineering perspective, the usage of small-scale
models can be very effective, as it saves both time and expensive
full-scale experiments. By using a small-scale model, one could
greatly decrease the difficulty of setting up an experiment, which
aside from financial considerations, might also be hazardous (vio-
lent blast for instance).

Scaling structural failure in dynamic problems is considered to
be impossible while using the established scaling laws if one as-
sumes use of a fracture-mechanics criteria [1]. In order to suc-
cessfully scale a prototype (full-scale), one must make sure that
both the geometry of the model (small-scale) and the failure
mechanism used for the model follow the scaling laws. It is dis-
cussed in Section 2 that this is not possible for a fracture-mechanics
based (fracture toughness) criterion. Scaling a dynamic failure
problem therefore requires an alternative failure mechanism that is
not based on fracture-mechanics. Adiabatic shear banding (ASB) is
one of the many failure mechanisms that occur in dynamic (high
strain-rate) loading situations. The homogeneous deformation
tends to localize into a narrow band (ASB) followed by catastrophic
failure [2]. The typical time scale involved is short, so that one can
consider this failure mechanism as adiabatic, with large associated
temperature increases, especially inside the band. Many materials

fail by adiabatic shear banding in an uncontrolled and dangerous
manner [2,3]. One failure criterion, proposed by Rittel et al. [4], is
described by

E ¼
Zεf

0

sijdε
p
ij (1)

where s and ε are the stress and strain tensors. Such a criterionmay
remind of the work by Cockcroft and Latham [5], albeit in the
specifically dynamic context. However, the major difference is that
it is developed within a physical context (driven from microstruc-
tural considerations) and specifically applied to the dynamic case.

The strain energy density criterion (critical value of E in Equa-
tion (1)) is based on the dynamic deformation energy of cold work,
and suggests that the dynamic deformation energy is the governing
factor governing ASB formation. In experiments conducted by Rittel
et al. [4], it was shown that this energy was constant irrespective of
static pre-strain levels before dynamic failure, or interruptions in a
dynamic test that minimized thermomechanical coupling effects.
According to the criterion, a material point starts to fail when the
total strain energy density reaches a critical value, the latter being
measurable, and different for each material.

Other known (static or dynamic) failure mechanisms include
Gurson’s model [6], Grady’s fragmentation model [7], and the true
ductility criterion by Cockcroft and Latham [5]. Gurson’s model is
based on the plastic flow of a material that contains voids. This
model is complex, and requires a number of constants and
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conditions that one must determine to use this model. An example
of a damage criterion, based on a modified version of Gurson’s
model, can be found in the work of Longère et al. [8]. In the author’s
words [7], “Grady considered improvements to two aspects of the
Mott model of fragmentation [9]: the instantaneous appearance of
the fracture and the inability to pin down the statistical properties
of the failure strain in the material”. Mott’s model considers sta-
tistical aspects such as standard deviation in fracture strains, that
can’t necessarily be measured in independent experiments. Grady’s
model involves a large number of parameters that must be known
in order to estimate the failure strain. Although Grady’s model has
been validated [10], we have not found (widespread) engineering
applications of this failure model. The Cockcroft and Latham true
ductility criterion [5] for a material is the strain at fracture in an
idealized test, in which the stress is always of uniaxial torsion. This
criterion does not directly correlate to an energy based criterion,
except for ideally plastic materials. Moreover, this criterion is pro-
posed for the static failure case, although sometimes employed in
dynamic situations [11]. All of these failure criteria may undergo
scaling under certain conditions, but we have not found any
mention of scaled applications, or considerations based on these
criteria.

In order to fully understand the blast mechanism, we first need
to understand the nature of a blast wave. A blast wave is basically a
pressure wave, resulting from the release of a large amount of
energy, in a small and very localized volume. In our case we discuss
only a spherical air burst for simplicity.

The pressure at each and every point is a function of the distance
from the explosion point and the strength of the explosion. When
checking the effect of a blast on a plate or structure of any sort, it is
assumed that only the positive phase be taken into account, as the
negative phase can be neglected compared to it. The pressure
applied to the plate is [12]:

�
Peff ðtÞ ¼ PincðtÞ$

�
1þcos2 q�2cos q

�þPref ðtÞ$cos2 q; cos q�0
Peff ðtÞ ¼ PincðtÞ; cos q<0

(2)

where the angle of incidence q is formed by the line from the charge
center to the point of interest on the structure and the normal
vector of the structure’s surface at that point, Peff is the effective
pressure applied to the plate, Pinc is the incident pressure, and Pref is
the reflected pressure.

2. Scaling theory

When using scaling theory to compare between a full-scale
prototype and small-scale model, there are relationships between
the parameters of the prototype and the small-scale model that
must be fulfilled, as discussed e.g. in Jones [1].

This author mentions two important points of the scaling the-
ory. The first concerns geometrically similar scaling, as applied only
to linear elastic solids. The second consists of the Buckingham P-
theorem, which also applies to dynamic cases with inelastic
response, being, as such, relevant to this work. The scaling laws
remain the same for both subjects, thus they can be used for both
elastic and inelastic responses. We will present only the relevant
parameters for our problem, where a lower case letter represents
the small-scale model and an upper case letter represents the full-
scale prototype.

The mass density (r), Young’s elasticity modulus (E), and Pois-
son’s ratio (n) must be identical. The geometrical scaling factor b is
defined as the ratio between a typical length dimension of the
small-scale model and the full-scale prototype:

b ¼ l
L

(3)

Consequently, any length dimension in the small-scale model is
multiplied by the scaling factor. The other parameters are:

e Geometrical dimensions are proportional to the scaling factor:
l ¼ b$L.

e Strains remains the same: ε ¼ E.
e Stresses remains the same: s ¼ S.
e External pressures remains the same, and act at scaled loca-

tions: p ¼ P.
e Disturbances propagate in the material with the same speed:

c ¼ C.
e Time is proportional to the scaling factor: t ¼ b$T.
e Velocities in the structures remain the same: v ¼ V

There are a number of phenomena that do not follow the scaling
laws, and thus cannot be used when comparing scaled-down cases.
The first phenomenon is gravitational force, which cannot be scaled
experimentally according to the scaling laws. However, when
dealing with a dynamic case that involves high accelerations (for
example blast loading), the gravitational forces can often be
neglected. Another phenomenon that cannot be scaled is material
strain-rate sensitivity. Strain-rate in a small-scale model is larger
than in the prototype by 1/b, and thus the stresses in the full-scale
prototype and the small-scale model are no longer identical. In
order to overcome this, one must choose a material that is not
strain-rate sensitive at least for a first extent. The last phenomenon
that cannot be scaled is fracture toughness. Fracture toughness is
dependent on both stress and crack length, and has units of the
form pressure$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
length

p
. Thus the fracture toughness of a model

must be equal to b1/2 times that in a prototype and that is normally
physically impossible. Consequently, a failure criterion in a scaling
problem cannot be fracture-mechanics based. An alternative failure
criterion must be used, and this is the key issue addressed in this
paper.

Remembering the external pressures must be similar, we will
first examine a blast scaling problem. The most common scaling
method is known as the Hopkinson (or cube root) scaling law, as
found e.g. in Baker [13]. This law determines that two blast waves
that are similar, are produced at the same scaled distance if the
charges are the same explosive, similar in geometry, but scaled in
geometric size (thus weight). For air explosions the Hopkinson
scaled parameters are:

Z ¼ R
E1=3

; s* ¼ s
E1=3

; z ¼ I
E1=3

(4)

where Z is the scaled distance, s* is the characteristic scaled time of
the blast wave, z is the scaled impulse, R is the distance from the
center of the blast source and E is the source blast energy (E may
also be replaced by W which is the weight of the explosive).

This scaling law determines that the peak pressure and velocity
are similar in regard to scaling. This means that for the same value
of the scaled distance Z, these quantities will remain constant.
Remembering the geometrical scaling laws, where geometrical
dimensions are scaled by the scaling factor b, one finds that the
weight of the explosive material must also be scaled in order for the
scaled distance Z to be preserved. This means that the weight of the
explosive for the model is the prototype weight multiplied by b3.

To summarize the main points of the scaling theory of relevance
to this work:

e Linear dimensions and time are multiplied by b in a small-scale
model.
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