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We discuss modern numerical methods for quantum spin systems and their application to magnetic
molecules.
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1. Introduction

The knowledge of the energy eigenvalues and eigenstates of
small magnetic systems such as magnetic molecules is indispens-
able for a complete understanding of their spectroscopic, dynamic,
and thermodynamic properties. In this respect the numerical exact
diagonalization of the appropriate quantum Hamiltonian is the
method of choice. Nevertheless, such an attempt is very often se-
verely restricted due to the huge dimension of the underlying Hil-
bert space. For a magnetic system of N spins of spin quantum
number s the dimension is ð2sþ 1ÞN which grows exponentially
with N.

Group theoretical methods can help to ease this numerical
problem. Along these lines much effort has been put into the devel-
opment of an efficient numerical diagonalization technique of the
Heisenberg model

H
�Heisenberg ¼ �2

X
i<j

Jij s
�
ðiÞ � s

�
ðjÞ ð1Þ

using irreducible tensor operators and thus employing SU(2) sym-
metry of angular momenta [1–6]. A combination of this meanwhile
well established technique with point-group symmetries could be
developed over the past years, first for those point-group symme-
tries that are compatible with the spin coupling scheme, i.e. avoid
complicated basis transforms between different coupling schemes
[7–10], later also for general point groups [11–13]. Nevertheless,
if the dimension of the largest Hilbert subspace exceeds about 105

complete numerically exact diagonalization is no longer possible
with current computers and programs.

Fortunately, a few very accurate approximations have been
developed that can be applied to quantum spin systems. In this arti-

cle we are going to discuss the Finite Temperature Lanczos Method
(FTLM), the Density Matrix Renormalization Group (DMRG) and its
dynamical variant as well as Quantum Monte Carlo (QMC).

For problems with Hilbert space dimensions of up to roughly
1010 – the Finite Temperature Lanczos Method (FTLM) provides a
very accurate and astonishingly easy to program method [14,15].
In recent publications we demonstrated that this method is indeed
capable of evaluating thermodynamic observables for magnetic
molecules with an accuracy that is nearly indistinguishable from
exact results [16–18]. So far we encountered only one problem
where achieving a satisfying accuracy posed a problem – the FeIII

10

ferric wheel [19]. Mathematically this methods relies on the idea
of trace estimators [20]; it is not restricted to spin systems and
for instance also applied in quantum chemistry [21,22].

The Density Matrix Renormalization Group (DMRG) method is a
variational method that approximates the true eigenstates by so-
called matrix-product states [23–26]. These states are iteratively
constructed, thus the method allows to treat the full Heisenberg
Hamiltonian but in a reduced Hilbert space. The Hilbert space is
truncated in a controlled way and the accuracy of the method
can be estimated with the help of a truncation error. In the field
of molecular magnetism DMRG has been applied for instance to
the Heisenberg icosidodecahedron with s ¼ 5=2 [27,28], i.e. a mod-
el of the fMo72Fe30g Keplerate [29,30].

DMRG can be extended in order to evaluate transition matrix
elements. This variant is called Dynamical DMRG (DDMRG); it aims
at the calculation of dynamical correlation functions as needed for
the description of Inelastic Neutron Scattering cross sections
[31,32]. In a recent article we could show that DDMRG is able to
model INS spectra of the very large magnetic ring molecule Fe18

with unprecedented accuracy and thus allows to determine model
parameters which would be impossible using only observables
such as susceptibility [33]. This extension is not discussed in this
article.
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Finally we would like to provide examples for the application of
Quantum Monte Carlo (QMC) [34–36] to magnetic molecules. This
approximate method which works accurately only for non-frus-
trated quantum spin systems [37], has already been applied to sev-
eral molecular systems by Engelhardt and Luban [38–41]. Larry
Engelhardt also provides a very popular program – FIT-MART – with
which one can deduce Heisenberg exchange parameters from sus-
ceptibility data [42].

Some of the discussed methods are freely available as program
packages. Besides FIT-MART the program MAGPACK [43] can be used for
complete diagonalization. Approximate methods such as DMRG
and QMC are provided by the ALPS package [44–46].

The article is organized as follows. In Section 2 the Finite-Tem-
perature Lanczos Method is introduced. Section 3 discusses the
application of Quantum Monte Carlo, and Section 4 briefly intro-
duces to the Density Matrix Renormalization Group.

2. Application of the Finite-Temperature Lanczos Method to
giant gadolinium clusters

In a recent publication heterometallic cluster complexes
{Ln12Mo4} featuring a Ln12 core that has the structure of a distorted
truncated tetrahedron, see Fig. 1, were reported [47]. The experi-
mental magnetic studies of the {Gd12Mo4} were accompanied on
the theoretical side by calculations that replaced the Gd spin of
s ¼ 7=2 by fictitious spins s ¼ 5=2 since otherwise the calculation
would not have been feasible in a reasonable time (of several
weeks [sic!]). Now, after a few months, the calculations using the
Finite-Temperature Lanczos Method for N ¼ 12 spins s ¼ 7=2 are
completed. Before presenting the results a short reminder of the
method shall be given which in detail is explained elsewhere
[14–16].

For the evaluation of thermodynamic properties in the canoni-
cal ensemble the exact partition function Z depending on temper-
ature T and magnetic field B is given by

ZðT;BÞ ¼
X

m
hmje�b H

� jmi: ð2Þ

Here fjmig denotes an orthonormal basis of the respective Hil-
bert space. Following the ideas of Refs. [14,15] the unknown matrix
elements are approximated as

hmje�b H
� jmi �

XNL

n¼1

hmjnðmÞie�b�ðmÞn hnðmÞjmi; ð3Þ

which yields for the partition function

ZðT;BÞ � dimðHÞ
R

XR

m¼1

XNL

n¼1

e�b�ðmÞn jhnðmÞjmij2: ð4Þ

For this procedure jmi is taken as the initial vector of a Lanczos
iteration. This iteration consists of NL Lanczos steps, which span a
respective Krylow space, in which the Hamiltonian is diagonalized.
This yields the NL Lanczos eigenvectors jnðmÞi as well as the associ-
ated Lanczos energy eigenvalues �ðmÞn . They are enumerated by
n ¼ 1; . . . ; NL. The number of Lanczos steps NL is a parameter of
the approximation; NL � 100 is usually a good value. In addition,
the complete and thus very large sum over all states jmi is replaced
by a summation over a subset of R random vectors, where R is the
second parameter of the method. For many cases R can be rather
small, e.g. R � 20, whereas for other systems convergence is
achieved only for R � 100. An observable would then be calculated
as

OðT;BÞ � 1
ZðT;BÞ

X
C

dimðHðCÞÞ
RC

XRC

m¼1

XNL

n¼1

e�b�ðm;CÞn

� hnðm;CÞjO
�
jm;Cihm;Cjnðm;CÞi: ð5Þ

Here C labels the irreducible representations of a symmetry
group that can be used to split the Hilbert space into subspaces
HðCÞ in order to increase the accuracy. In the following calcula-
tions we decomposed the Hilbert space according to the total mag-
netic quantum number M.

The magnetization of {Gd12Mo4} was evaluated for four differ-
ent parameter sets. Since the total dimension is a staggering
ð2sþ 1ÞN ¼ 68;719;476;736 and even the dimension of the
largest Hilbert subspace with M ¼ 0 is still 3;409;213;016, the
calculations needed about a quarter of a year on a supercom-
puter. As Fig. 2 shows, the exchange interactions are antiferro-
magnetic and of the order of �0.05 K. Since they are so small,
the experimental data, taken from [47], is not sufficient to disen-
tangle between scenarios where the interactions J1 between
spins within triangles and J2 between triangles are the same or
different. A scenario where only interactions between triangles
bind the spins into dimers can be excluded, but a scenario where
the system would consist of uncoupled triangles cannot be
excluded.

Fig. 3 displays the magnetocaloric behavior for a coupling
scheme with J1 ¼ J2 ¼ �0:05 K. The l.h.s. shows a set of isentropes,
i.e. curves which the system would follow when the magnetic field
is reduced in an adiabatic process. The figure on the r.h.s. shows
the isothermal entropy changes for field sweeps from
B ¼ ð1;2;7Þ T , respectively, to B ¼ 0. The entropy differences are
rather large at low temperature as expected for a weakly couple
gadolinium system.

3. Quantum Monte Carlo

Quantum Monte Carlo (QMC) [34–36] is a very powerful meth-
od for non-frustrated, i.e. bipartite quantum spin systems. For a
discussion of frustration see, e.g. [48]. The method can easily deal
with up to 100 or more spins. In the field of molecule-based mag-
netism is was applied to several spin systems, e.g. homo- and het-
erometallic rings [38–41] as well as to a one-dimensional spin tube
[49]. In the latter publication the heat capacity of a system of
N ¼ 100 spins with s ¼ 3=2 was calculated with the help of QMC.

Again the idea is to approximate the partition function. This
time the partition function is chopped (sliced) in the sense that
the exponential is written as a product of m exponentials with
exponents divided by m (Trotter–Suzuki decomposition [50–52]).
For m!1 the exponential can be written as a product of the
exponentials of the (even non-commuting) parts of the Hamilto-
nian. One can as well linearize the exponential for large enough
m. In any case, the multi-index sum is evaluated in a Monte-Carlo
fashion as sketched in the equations below:

Fig. 1. The core structure of {Gd12Mo4} is a truncated tetrahedron. The bullets
represent the 12 spin sites and the edges correspond to the 18 exchange
interactions between nearest-neighbor spins. The exchange inside the four triangles
is named J1, between triangles J2.
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