Polyhedron 66 (2013) 43-47

Contents lists available at SciVerse ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Chromium-ethynyltetrathiafulvalene complex based magnetic materials

Junichi Nishijo*

School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan

ARTICLE INFO

Article history: Available online 8 February 2013

Keywords: Acetylide Tetrathiafulvalene Molecule-based magnet Charge transfer complex

ABSTRACT

New molecule based magnetic materials $[CrCyclam(C \equiv C-MeEDT-TTF)_2](TCNQ)_3$ ([1](TCNQ)₃, Cyclam = 1,4,8,11-tetraazacyclotetradecane, MeEDT-TTF = 5-methyl-4',5'-ethylenedithiotetrathiafulvalene, TCNQ = 7,7,8,8-tetracyanoquinodimethane) and [1][Cr(NCS)_4Phen]_2(acetone)_2(toluene) (Phen = 1,10-phenanthroline) were prepared by the electrochemical oxidation of [1](CF₃SO₃). Tetra-thiafulvalene(TTF)-type ligands and a neutral TCNQ molecule are stacked and form a charge-transfer complex in the crystal of [1](TCNQ)₃, where a weak ferromagnetic interaction was observed between Cr^{3+} and $(TCNQ)_2^-$. The crystal structure of [1][Cr(NCS)_4Phen]_2(acetone)_2(toluene) was characterized by ferrimagnetic chain of Cr^{3+} Cyclam units (S = 3/2) and $(TTF)_2^+$ ligand dimers (S = 1/2), while each $(TTF)_2^+$ dimer is sandwiched between two $[Cr(NCS)_4Phen]^-$ anions (S = 3/2). The crystal shows ferrimagnetic transition at 4.8 K.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In these days, there has been considerable interest in magnetic transition metal complexes containing redox-active tetrathiafulvalene (TTF)-based ligands [1–7]. In transition metal-TTF composite systems, the π -spin (S = 1/2) on an oxidized TTF ligand can strongly interact with the d-spin of center transition metal through the coordination bond. Furthermore, we can also expect a strong inter-molecular interaction by using an inter-molecular π - π stacking which frequently brings quite strong spin–spin interaction of $|2J|/k_B > 100$ K [8], where k_B is the Boltzmann constant and J is defined in the following Hamiltonian;

$$H = -2J\sum_{\{i,j\}}S_iS_j$$

Recently, the author and co-workers reported a new transition metal–TTF complex [CrCyclam(C=C-MeEDT-TTF)₂]^{*n*+} ([1]^{*n*+}, Fig. 1) [9] which shows strong intra- and inter-molecular spin–spin interactions. The strong inter-molecular interaction is achieved by the π – π stacking of the TTF-type ligands, resulting in the charge-and spin-delocalization over adjacent molecules. The intra-molecular exchange interaction between localized d- and delocalized π -spins is mediated by the ethynyl group, which directly connects the π -spin of a ligand to the d-spin with the strong exchange interaction of $2J/k_{\rm B} = -30$ K. Because the observed strong intra-and inter-molecular interactions of [1]^{*n*+} are well suited for molecule-based magnets, an attempt was made to construct new molecule-based magnets consisting of [1]^{*n*+} and magnetic anions.

In this paper, I report on the two new molecule-based magnetic materials, [1](TCNQ)₃ (TCNQ = 7,7,8,8-tetracyanoquinodimethane) and [1][Cr(NCS)₄Phen]₂(acetone)₂(toluene) (Phen = 1,10-phenan-throline). The former is a charge-transfer complex owing to the strong π - π interaction between TTF-type ligands and TCNQ molecules. The latter is a ferrimagnet with a transition temperature of 4.8 K, where a cation–anion π - π interaction plays an important role.

2. Experimental

All reagents and solvents were purchased from Aldrich Chemical Co., and used without further purification. [1]OTf, and TEA[CrPhen(NCS)₄] (TEA = tetraethylammonium) were prepared according to the literatures [9,10]. [1](TCNQ)₃ crystals were prepared as follows; 50 mg of [1]OTf, 20 mg of TCNQ and 20 mg of Li-TCNQ were dissolved in 50 ml of acetonitrile. After standing the solution for a day the precipitate of $[1](TCNQ)_3$ is filtered and washed with a small amount of diethyl ether. [1][Cr(NCS)₄Phen]₂(acetone)₂(toluene) was obtained by the galvanostatic oxidation of [1]OTf (12 mg) in 20 ml TEA[Cr(NCS)₄Phen] (30 mg) solution of toluene-acetone 1:1 mixture (0.4 µA, 2 weeks). The crystal structures of the materials were determined by single crystal X-ray diffraction with a Rigaku AFC-7R four-circle diffractometer at 293 K, using Mo K α radiation (λ = 0.7107 Å). The structures were solved using direct methods (sir2004) [11], then refined with a full-matrix leastsquares method (SHELXL-97) [12]. Magnetic susceptibilities were measured by using Quantum-Design MPMS-XL7 SQUID magnetometer for crystals encapsulated in an aluminum capsule. Diamagnetic corrections were estimated from Pascal's constants as -739×10^{-6} and -1024×10^{-6} emu mol⁻¹ for [1](TCNQ)₃ and [1][Cr(NCS)₄Phen]₂(acetone)₂(toluene), respectively.

^{*} Tel./fax: +81 42 591 7542. E-mail address: jun-ichi.nishijo@meisei-u.ac.jp

^{0277-5387/\$ -} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.poly.2013.01.035

Fig. 1. The molecular structures of $[CrCyclam(C = C-MeEDT-TTF)_2]^{n+}$ ([1]ⁿ⁺), TCNQ and $[CrPhen(NCS)_4]^-$.

3. Results and discussion

3.1. Crystal structures

The crystallographic data of the crystals are summarized in Table 1. The asymmetric unit of $[1](TCNQ)_3$ contains a half $[1]^{n+}$, and one and a half TCNQ molecules. One kind of the TCNQ molecules, denoted as TCNQ (A), form $(TCNQ)_2$ dimers, while the other TCNQ molecules, TCNQ (B), are isolated. These TCNQ dimers, monomers and TTF-type ligands of $[1]^{n+}$ are stacked in the manner of $(TCNQ (A))_2$ -TTF-TCNQ (B)-TTF, resulting in a sheet structure parallel to the (111) plane as shown in Fig. 2. Using the empirical relations between the bond lengths in a TCNQ molecule and its charge state [13,14], we can estimate the valence of the TCNQ molecules as -0.56 for TCNQ (A) and -0.28 for TCNQ (B), respectively. Considering the charge compensation and charges of Cr^{3+} and ethynyl groups (-1), the valence of a TTF-type ligand is also determined as +0.2. The result indicates that a TCNQ (B) molecule and two adjacent TTF-type ligands form a non-magnetic charge-transfer

Table 1Crystallographic data.

	[1](TCNQ) ₃	[1][Cr(NCS) ₄ Phen] ₂ (acetone) ₂ (toluene)
Molecular formula	$C_{68}H_{50}CrN_{16}S_{12}$	$C_{77}H_{74}Cr_3N_{16}O_2S_{20}$
Formula weight	1528.04	2052.72
Temperature (K)	293(2)	293(2)
Radiation, λ (Å)	0.71073	0.71073
Crystal system	triclinic	monoclinic
Space group	ΡĪ	C2/c
a (Å)	9.2644(9)	30.782(2)
b (Å)	12.8103(11)	15.0938(10)
c (Å)	15.1934(14)	21.2184(16)
α (°)	78.133(5)	90
β (°)	89.715(6)	106.1731(17)
γ(°)	85.234(6)	90
V (Å ³)	1758.4(3)	9468.2(12)
Ζ	1	4
$d_{\rm calc}~({ m g~cm^{-3}})$	1.443	1.440
Unique	8476	12302
reflections		
$I > 2\sigma$	6768	8530
Final R_1^a , wR_2^b	0.0522, 0.1351	0.0642, 0.1791

^a $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|.$

^b $wR_2 = \{\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2] \}^{1/2}.$

complex thanks to their π - π stacking, while a TCNQ (A) dimer behaves as a S = 1/2 radical anion. The charge transfer state of a TTF-type ligand is also supported by the almost flat shape of the TTF-type ligand which shows off-planar structure in a neutral state [15].

The crystal structure of $[1][Cr(NCS)_4Phen]_2(acetone)_2(toluene)$ is shown in Fig. 3. The asymmetric unit of the crystal consists of a half $[1]^{n+}$ cation, one $[CrPhen(NCS)_4]^-$ anion, a half toluene and one acetone molecules, where the conformation of a terminal ethylene group in a TTF-type ligand, the orientation of a toluene molecule and the rotational angles of the methyl groups of an acetone and a toluene molecules are disordered. The cation to anion ratio of 1:2 indicates the divalent state of the complex $[1]^{2^+}$, where an additional positive charge is owing to the oxidation state of TTF backbones. Adjacent TTF-type ligands of neighboring $[1]^{2+}$ cations form a (TTF)₂⁺ dimer, resulting in one-dimensional chain structures elongated parallel to the (a + b) and (a - b) directions as shown in Fig. 3b. This chain structure is quite similar to that observed in [1][ClO₄]₂(PhCl)₂(MeCN) [9], suggesting that a charge and a spin are delocalized over a $(TTF)_2^+$ dimer. In the present case, a (TTF)₂⁺ dimer is sandwiched between two anions, and cation-anion inter-molecular spin-spin interaction is expected through the π - π stacking. The chains of $[1]^{2+}$ cations are separated from each other in the *c*-direction by solvent molecules, while thiocyanate ligands of an anion make several inter-chain contacts in both the band the *c*-directions.

3.2. Magnetic properties

The molar magnetic susceptibility χ of [1](TCNQ)₃ obeys the Curie–Weiss law with the Curie constant of 2.25 emu K mol⁻¹ and small positive Weiss temperature of Θ = +0.3 K as shown in Fig. 4. The observed Curie constant is in good agreement with the sum of the spin-only values of *S* = 3/2 (1.875 emu K mol⁻¹) and *S* = 1/2 (0.375 emu K mol⁻¹), and consistent with the crystal structure containing two magnetic species: Cr³⁺ (*S* = 3/2) and (TCNQ)₂⁻ (*S* = 1/2). The χ *T* value gradually increases as the temperature decreases suggesting the existence of a ferromagnetic interaction, but no magnetic coupling between Cr³⁺ and (TCNQ)₂⁻ is probably mediated by a π - π stacking of a non-magnetic TTF-type ligand and a (TCNQ)₂⁻ dimer.

Fig. 5a shows the temperature dependencies of the γ and γT values of [1][Cr(NCS)₄Phen]₂(acetone)₂(toluene) measured under the magnetic field of 0.1 T. The observed value of χT = 5.76 emu K mol⁻¹ at 300 K is obviously smaller than that of the sum of the spin only values of Cr^{3+} (S = 3/2), (TTF)₂⁺ (S = 1/2) and two $[Cr(NCS)_4Phen]^-$ (S = 3/2), suggesting the existence of a strong antiferromagnetic interaction. The χT value gradually decreases as the temperature decreases, and reaches a minimum of 5.47 emu K mol⁻¹ at around 80 K. Below the temperature, the χT value exhibits a rapid rise to a maximum value of 22.51 emu K mol⁻¹ at 4.8 K, and then rapidly decreases as the temperature decreases where the χ exhibits a roughly constant value of 5.0 emu mol⁻¹. The sharp peak of the χT value and the plateau of the χ value below the temperature suggest that this material shows a ferrimagnetic transition at 4.8 K, as evidenced by the magnetization curve at 2 K. In the temperature, applying the external field substantially increases the magnetization M as shown in Fig. 5b, and M reaches a value of 8 $\mu_{\rm B}$ at around 1.5 T, corresponding to the ferrimagnetic system of $3 \times 3/2 - 1/2$. In the low field region, the curve clearly shows a hysteresis loop with the small coercive force and the remanent magnetization of 80 Oe and 0.3 $\mu_{\rm B}$, respectively. The small coercive force related to a small anisotropy is consistent with the almost isotropic nature of the octahedral $Cr^{3+}(d^3)$ complexes.

Download English Version:

https://daneshyari.com/en/article/7766466

Download Persian Version:

https://daneshyari.com/article/7766466

Daneshyari.com