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a b s t r a c t

In this work, the spin-transition behavior in molecular magnet was investigated via Monte Carlo simulation
on Ising model with mechano-elastic interaction extension. The initial spin-arrangement took hexagonal lat-
tice structure in two dimensions, where spin molecules situated on the hexagonal lattice points were allowed
to move under spring-type elastic interaction potential. Metropolis algorithm was used to update the spin
configurations and thermal hysteresis loops were recorded to extract the hysteresis properties, such as per-
iod-average magnetization, loop area, loop width and height, as functions of parameters associated to mag-
netic and elastic interaction in the Hamiltonian. From the Monte Carlo results, the dependence of the
hysteresis loop characteristic on magnitude of energy differences and number of available states between
the low spin state and the high spin state was evident. The occurrence of the cooperative effect was notable,
in agreement with previous experimental investigation, when the range of Hamiltonian parameters used is
appropriate. Then all the measured hysteresis characteristic were passed to the Artificial Neural Network
modeling to create extensive database of how the thermal hysteresis would respond to the change of molec-
ular magnet Hamiltonian parameters. The scattering plots between the Artificial Neural Network and the real
measured results have R-square closed to one which confirms the success of Artificial Neural Network in
modeling this thermal hysteresis behavior. One is therefore allowed to use this Artificial Neural Network
database as a guideline to design ultra-thin-film molecular magnet application in the future.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

To continuously serve the customers’ great need in information
industries, there has been an intense interest on enhancing storage
capacity. This therefore inspires the pursuit for materials that can
present stable bi-molecular states. One persuasive candidate is
the spin-transition material: a molecular magnet with bi-switch-
able states between low spin state (LS) and high spin state (HS)
[1]. Due to more occupied orbitals, the HS volume is larger than
that of the LS [2–3]. Differences between these volumes during
spin-transition induce material distortions leading to spring-like
interactions. Transition between states can be enhanced by heat,
magnetic field, light or stresses, which changes materials magnetic
properties [4–7]. For instance, with increasing environmental tem-
peratures, there occurs thermal spin-transition in molecular mag-
nets (the so called thermal spin-crossover) from the low spin state
(LS) at low temperatures to the high spin state (HS) at high temper-
atures. Further, depending on the magnitude of intermolecular

interactions, the thermal spin-transition from low-to-high and
high-to-low temperatures can be of the same or different charac-
teristics (in forming thermal hysteresis phenomena or the cooper-
ative effect), which makes spin-transition compound become a
promising candidate for future high-density information storage
media [8–10]. Although number of theoretical studies has been
performed in supporting experiments to accelerate both techno-
logical and fundamental developments, there are still incomplete
pictures in the fundamental understanding. Specifically, to estab-
lish general accessible model, relevant Hamiltonian parameters
are usually defined dimensionless and varied to investigate the
transition behavior. However, there are considerable numbers of
relevant parameters in the Hamiltonian, so the investigation with
extensive range of the parameters is somewhat limited. Some
studies had to choose a specific set of well-defined parameters to
model the problem [11–20]. Although with some fascinating suc-
cess, those studies were limited to the specified parameters and
the results are based on case by case basis. Moreover, it is known
that different magnitudes of interactions between spin states re-
sults in various types of the thermal hysteresis behavior such as
the cooperative phenomena between the LS and HS phases; hence,
some physics may be left out due to the limitation in the magnetic
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and mechano-elastic interaction ranges. Consequently, this study
investigates the thermal hysteresis properties in a model capable
of presenting molecular magnet that has bi-stable states (with size
differences between these bi-stable states), and the magnetic spins
have ability to move in space under an elastic interaction. Further,
to overcome the limitation in the allowed ranges of the parameters
problem, Monte Carlo (MC) simulation [21–22] was used alongside
with the Artificial Neural Network (ANN) modeling [23–24] in
extracting the thermal hysteresis behavior over extensive ranges
of parameters.

To briefly outline, the ANN modeling is mathematical technique
having an ability to ‘learn’ from experiences in establishing com-
plex relationships among parameters, while the MC is a stochastic
technique using the system inherited probability to reveal system
behavior. Then, this work began with proposing the Ising Hamilto-
nian with mechano-elastic interaction in representing spin-transi-
tion molecules and magnetic interaction among them [11–20]. All
spin-transition molecules, represented by Ising spins, were initially
at the HS states arranging themselves on two-dimensional hexag-
onal structure. Then with varying input parameters which are the
molecular radius ratio of the HS radius to the LS radius, the energy
differences between the HS and LS, the degeneracy ratio between
the HS and the LS, the temperature changing rate Tfreq, and the
maximum temperature away from its critical point Tamp, MC simu-
lation was used to extract the average magnetization per spin and
recorded as a function of temperature in constructing steady-state
thermal-hysteresis. Then, the ANN modeling was performed to re-
late how the hysteresis properties depend on input parameters
with multilayer perceptron infrastructure [23–24], i.e., one input
layer (containing input parameters), two hidden layers, and one
output layer (containing the thermal hysteresis properties). This
was done by training the ANN with varying number of neurons
in hidden layer to find the network with the best accuracy, and
optimized network was used to predict the outputs from untrained
sets of inputs, in drawing dynamic thermal hysteresis phase dia-
gram. Details of these MC and ANN procedures are given in the
next sections, with prominent findings presented in the results
and discussion section and summarized in the conclusion section.

2. Monte Carlo simulation

The Monte Carlo (MC) technique/simulation is a stochastic
method which helps to generate/predict results based on some
known probabilities. Hence, the MC is really useful when the sys-
tem ensemble is very large where all analytic approaches fail, even
numerically, to achieve results within an allowed time frame [25].
As a result, the MC has been proved to be useful in many fields
ranging from physical science, health science, finance, computer
game industries, etc. In materials science or condensed matter
physics areas, typical thermal MC simulation starts with proposing
Hamiltonian of the studied physical system (e.g., consider Ref. [26]
and references therein). Then, by minimizing the system energy,
the system arrives in thermal equilibrium or steady state configu-
rations. After that, due to thermal fluctuation, the time dependent
configurations have to be quantitatively sampled to yield the rep-
resentative of the system observables. Therefore, to investigate the
thermal hysteresis behavior, e.g., the hysteresis shape and width
(or cooperative characteristic which tells how the spin-transition
depends on cooling and heating history), this work considered
the Ising Hamiltonian using the short-ranged Wajnflasz–Pick
version [27] with long-ranged elastic interaction addition as
[11,18].
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In Eq. (1), the spin si equals to +1 for the HS and �1 for the LS,
hiji indicates that the sum includes only nearest neighboring pairs,
J is the spin short-range exchange interaction, D is the energy dif-
ference between the low spin state (LS) and high spin state (HS),
log g is the natural logarithmic function of the degeneracy ratio be-
tween the HS and the LS where �kT log g suggests how strong is
the chemical potential driving force in the system [28], and kel is
the effective elastic interaction among the spins (the spin-transi-
tion molecules). Further, ~r is a vector referring to a spin position
(location) away from a fixed origin, and Ri ¼ RiðsiÞ is the spin
molecular magnet radius which depends on the spin state si i.e.,
Ri = RHS for HS (si = + 1) or Ri = RLS for LS (si = �1). In this work, both
distance and spins were set dimensionless, J = 1 was set as energy
unit, and kel was fixed at 1 J. Therefore, with this energy setting,
temperature in this work has a unit of J/k, where k is the Boltz-
mann’s constant.

In general, the competition between D and log g determines
which state (LS or HS) is the preferred state. For instance, if D is
much larger than log g, the systems will stay at LS even at high
temperatures. On the other hand, if log g is much larger than D,
the systems will stay at HS even at low temperatures. Neverthe-
less, at some intermediate proportion of D and log g (and kT),
and with long-ranged elastic interaction, thermal hysteresis with
cooperative characteristic (the presence of hysteresis width at
temperatures where number of LS equals to that of the HS) be-
comes evident. For instance, Fig. 1 shows thermal hysteresis exam-
ples from MC simulation using D = 15 and log g = {2,4,6} which
confirm such behavior. As is seen, for low log g (e.g., log g = 2),
the magnetization stays close to its minimum (m = �1) which in-
fers that the LS is of preference, so the period-average magnetiza-
tion Q ¼ 1

thermal field period

H
mdt0 is negative. On the other hand, with

increasing log g to some intermediate value (e.g., log g = 4) the hys-
teresis width as well as the cooperative characteristic become evi-
dent while the loop starts to gain some symmetry, so Q approaches
zero. At the high log g (e.g., log g = 6), there are large number of
available HS so the chemical potential of the HS is satisfactorily
low (if temperature is not too small) so the HS is favored and mag-
netization stays closes to its maximum (m = 1). In this case, the
loop symmetry is rather poor and Q becomes positive.

Although the competition between D and log g yields various
striking thermal hysteresis phenomena; many previous studies
fixed/chose few sets of {D, log g} in their investigation of hysteresis
phenomena to make the calculation computationally feasible. This
therefore leaves a large window of opportunities in clarifying how
extensive the range of {D, log g} should be in giving appropriate
and desired thermal hysteresis behavior. Therefore, in this work,
how D and log g play their roles in determining thermal hysteresis
will be another step clarified using MC simulations. However, due
to many degrees of freedom making simulations over the extensive
ranges of Hamiltonian parameters become computationally
impractical, an artificial intelligence technique namely ANN is
compulsory in filling the gap.

In this work, the MC procedure was performed on the two-
dimensional hexagonal lattice (i.e., the triangular lattice), as only
single kel is needed for this thermal hysteresis investigation [13]
and many molecular magnet materials do exist in hexagonal form
(e.g., Refs. [29–31]). The considered lattice consisted of N = L2 spins
where L is the system linear dimension that was set to L = 20. Re-
sults from larger L’s are not much qualitatively different. Steps of
how to perform MC simulation can be displayed as the flowchart
in Fig. 2. The input parameters to the simulation were the spherical
radius ratio of the HS radius to the LS radius (r = RHS/RLS), D, log g,
the temperature sweeping rate Tfreq and the maximum tempera-
ture away from the critical point Tamp, where their ranges used in
this work can be found in Table 1 (rows labeled by input and col-
umn labeled by actual range). The critical temperature (TC) of the
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