Tetrahedron: Asymmetry 28 (2017) 1829–1833

Contents lists available at ScienceDirect

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

Efficient lipase-catalysed route for the kinetic resolution of salsolidine and its ß-carboline analogue

Barbara Kovács, Rita Megyesi, Enikő Forró*, Ferenc Fülöp*

Institue of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary

ARTICLE INFO

Article history: Received 19 October 2017 Accepted 24 October 2017 Available online 10 November 2017

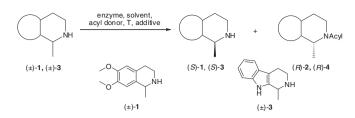
ABSTRACT

Racemic 1-methyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline **1** and 1-methyl-1,2,3,4-tetrahydro-ßcarboline **3** were resolved through lipase-catalysed asymmetric acylation on the secondary amino group. High enantioselectivities (E > 200) were observed when the acylation of racemic **1** was performed with phenyl allyl carbonate in the presence of *Candida rugosa* lipase in toluene at 40 °C or with *Candida antarctica* lipase B in *tert*-butyl methyl ether at 50 °C. Excellent enantioselectivity (E > 200) characterised the CAL-B-catalysed acylation of racemic **3** with phenyl allyl carbonate in the presence of triethylamine in *tert*-butyl methyl ether at 50 °C. The product (R)-carbamates (ee > 97%) were hydrolysed into the corresponding (R)-enantiomers of the free amines **1** and **3** (ee = 99%) with the use of Pd₂(dba)₃-CHCl₃ catalyst. © 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Interest in the research of compounds containing the 1-substituted 1,2,3,4-tetrahydroisoquinoline ring system has recently come into view, since compounds bearing this skeleton exert major biological activities. Several derivatives possess a common nucleus of synthetic structures, while other compounds are extracted from natural sources. All of them are associated with important pharmacological effects. The naturally occurring (S)norcoclaurine [(1S)-1-(4-hydroxybenzyl)-1,2,3,4-tetrahydro-6,7isochinolindiol] is an intermediate in the synthesis of morphine, papaverine or the antibacterial berberine.¹ Racemic norcoclaurine has α - and β -adrenoreceptor activity.² Solifenacin [(15,3'R)-3'quinuclidinyl-1-phenyl-1,2,3,4-tetrahydro-2-isoquinolinecarboxylate] containing a 1-phenyl-substituted tetrahydroisoquinoline core is an example of synthetic compounds. It shows urinary antispasmodic effect.³ Both enantiomers of 1-methyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline 1 (salsolidine) are naturally occurring compounds.⁴ The (R)-enantiomer was isolated from Genista pungens,⁴ while the (S)-enantiomer was found in Salsola richteri.⁴ Many pharmacological properties have been described to salsolidine; e.g., it inhibits the uptake of 5-hydroxytryptamine by human blood platelets.⁴ The (R)-enantiomer has a monoamine oxidase A (MAO A) inhibitoring effect.⁴ On the other hand, as a structural feature of a trimethoprim analogue, it acts as a dihydrofolate reductase inhibitor.⁴ The pharmaceutically valuable 1-substituted 1,2,3,4-tetrahydro-ß-carboline skeleton is also a common building block of several alkaloids, including the naturally occurring reserpine, which shows antitumor activity, as well as antihypertensive and neuroprotective effects.⁵ Synthetic 1-substituted *N*-acylated tetrahydro-ß-carbolines have inhibitory activity against the Breast Cancer Resistance Protein (ABCG2).⁶ The (*S*)-enantiomer of salsolidine analogue 1-methyl-1,2,3,4-tetrahydro-ß-carboline **3** (eleagnine) was isolated from *Eleagnus angustifolia* and *Petalostyles labicheoides*.⁷ The racemic form can bind to the GABA_A receptors in the benzodiazepine binding site, but it has an inverse agonist effect.⁸

It is not surprising, therefore, that a large number of synthetic routes have been developed for the preparation of **1** and **3**, in particular, in enantiomeric forms.^{7,9–13} As an example, enantiomeric **1** was synthesized by Ding and et al. through enantioselective acylation of the racemic mixture in a batch process.¹⁴


In this work, our aim was to devise a new enzymatic strategy for the preparation of enantiomeric **1** and **3**, through lipase-catalysed kinetic resolution (Scheme 1). In addition to the batch reactions, we planned to examine the possibilities for their enzymatic reactions in a continuous-flow system. The use of this novel method has clear advantages, such as short reaction times, rapid heating and pressure screening.¹⁵ In the literature, there are various examples using this innovative technique for resolution. For example, the asymmetric acylation of 1-phenylethylamine^{16,17} and an imidazole derivative¹⁸ as well as the esterification of flurbiprofen¹⁹ have been reported.

Tetrahedron:

^{*} Corresponding authors. Tel.: +36 62 54 5564; fax: +36 62 54 5705. *E-mail address:* fulop@pharm.u-szeged.hu (F. Fülöp).

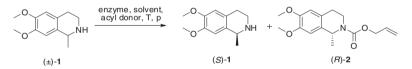
Scheme 1. Kinetic resolution of (\pm) -1 and (\pm) -3 through lipase-catalysed *N*-acylation on the secondary amino group.

2. Results and discussion

2.1. Synthesis of (±)-1 and (±)-3

1-Methyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (\pm) -1 was prepared from 3,4-dimethoxyphenylethylamine and acetic anhydride through Bischler–Napieralski cyclization followed by reduction, while racemic 1-methyl-1,2,3,4-tetrahydro-ß-carboline (\pm) -3 was synthesized utilizing the Pictet–Spengler reaction via a microwave-assisted procedure according to known literature methods.^{9,11}

2.2. Enzymatic resolution of (±)-1 and (±)-3


Ding et al. reported the asymmetric *N*-acylation of racemic **1** (E > 200, conv. = 50% in 72 h, yield > 46%) by using CAL-A (*Candida antarctica* lipase A), 3-methoxyphenyl allyl carbonate in toluene at 40 °C.¹⁴ The dynamic kinetic resolution of (±)-**1** was also

described by Page *et al.* using a combination of catalysts AY (*Candida rugosa* lipase) and pentamethylcyclopentadienyliridium(III) iodide dimer in the presence of 3-methoxyphenyl propyl carbonate at 40 °C (conv. = 90% in 23 h, *ee* = 96%, yield = 82%).²⁰

We started the resolution of (\pm) -**1** by an enzyme screening. First, the reaction was performed in batch with phenyl allyl carbonate in toluene at 40 °C (Scheme 2, Table 1, entries 1–4). Low enantiose-lectivity was observed with CAL-A (*E* = 9, entry 1) and with PS-IM (*Burkholderia cepacia* lipase) (*E* = 2, entry 2). In contrast, an improved *E* = 46 was found with CAL-B (*Candida antarctica* lipase B) 49% conversion in 4 days (entry 4). Lipase AY was the best catalyst with a conversion of 50% in 72 h and an excellent *E* (>200) (entry 3). Since the tested CAL-B was purchased as an immobilized enzyme (from Sigma) and also in view of its potential use in continuous-flow system, CAL-B was chosen for further optimization.

Next, the CAL-B-catalysed reaction was performed at 50 and then 60 °C (Table 1, entries 5 and 6). As the temperature was increased, the reaction rate increased considerably (entries 4–6). However, the best combination of reaction rate and enantioselectivity was found at 50 °C (entry 5). When toluene was replaced with *t*-BuOMe, a much faster reaction with excellent *E* (>200) was observed (entry 7).

Having the optimized conditions in the batch process (CAL-B, phenyl allyl carbonate, *t*-BuOMe, 50 °C, 1 bar), we decided to perform a reaction under these conditions in a continuous-flow reactor (an *H*-Cube in 'no H₂ mode'). A 70-mm-long heat- and pressure-resistant stainless-steel CatCart was filled with CAL-B. Unfortunately, only 20% conversion was reached after a cycle, although an excellent *E* (>200) was observed (Table 2, entry 1).

Scheme 2. Kinetic resolution of (±)-1 through enantioselective *N*-acylation.

Table T			
NT .	A	af(1)	1

N-Acylation of (\pm) -**1** in batch^a

Entry	Enzyme	T (°C)	Solvent	Reaction time (h)	Conv. (%)	$ee_s^{b}(\%)$	ee _p ^c (%)	Е
1	CAL-A	40	Toluene	96	42	50	68	9
2	PS-IM	40	Toluene	96	3	13	25	2
3	AY	40	Toluene	72	50	99	98	>200
4	CAL-B	40	Toluene	96	49	85	89	46
5	CAL-B	50	Toluene	48	50	96	95	154
6	CAL-B	60	Toluene	48	51	96	92	94
7	CAL-B	50	t-BuOMe	2.5	50	99	97	>200

^a 0.025 M (±)-**1**, phenyl allyl carbonate.

^b According to HPLC after a derivatisation with Ac₂O.

^c According to HPLC.

Table 2

Effect of pressure and temperature on the acylation of (±)-1 with phenyl allyl carbonate in a continuous-flow system^a

Entry	<i>p</i> (bar)	<i>T</i> (°C)	Conv. (%)	ee_s^{b} (%)	ee_{p}^{c} (%)	Ε
1	1	50	20	24	99	>200
2	30	50	3	3	99	>200
3	60	50	9	10	99	>200
4	1	60	21	26	99	>200
5	1	70	25	33	99	>200
6	1	80	7	7	99	>200

^a 0.025 M (±)-1, 244 mg CAL-B (70 mm CatCart); *t*-BuOMe, 0.1 mL min⁻¹.

^b According to HPLC after a derivatisation with Ac₂O.

^c According to HPLC.

Download English Version:

https://daneshyari.com/en/article/7766739

Download Persian Version:

https://daneshyari.com/article/7766739

Daneshyari.com