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a b s t r a c t

With Monte Carlo sampling method, a statistically consistent fatigue damage model under constant and
variable amplitude loadings based on linear Miner’s rule is proposed, which can quantitatively depict the
probabilistic properties of fatigue damage and life. Numerical simulation shows that linear Miner’s dam-
age criterion is statistically inconsistent; through some modification from a probabilistic point of view, a
statistically consistent damage criterion is first established. To validate the statistical model, numerical
verification of a supposed two-level cyclic loading and experimental verification of fatigue tests for Al-
alloy straight lugs available in the literature are successfully conducted. The model predictions coincide
quite well with both engineering hypotheses and experimental observations, compared with Miner’s
model, indicating that the model can be regarded quantitatively accurate for engineering application.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The simplification of complex fatigue loading spectra has signif-
icant impact on the experimental speeding up of endurance verifi-
cation for mechanical components, in which the most challenging
work is to predict fatigue damage and life under variable ampli-
tude loading conditions through more accurate damage models,
especially for its probabilistic properties. The fatigue progress un-
der service loading is uncertain in nature, due to various sources
of uncertainty such as material properties, external applied load-
ing, notch geometries, defects.

Over the past several decades, a variety of cumulative damage
theories [1,2] have been developed for materials. The LDR (linear
damage accumulation rule), also known as Miner’s rule [3], is the
simplest and most popular one; however, it has two main disad-
vantages. First, it is a linear cumulative damage rule, without tak-
ing load sequence effect into account; second, it is a deterministic
damage model, which means it cannot account for the statistical
dispersion of cumulative damage. Dozens of alternative theories
have been proposed to take the place of Miner’s rule, such as non-
linear cumulative damage rule [4,5], damage curve approach (DCA)
[6], approaches based on crack growth [7], energy-based damage
theories [8] and continuum damage mechanics approaches
[9,10]. In the authors’ knowledge, almost all these damage models
are deterministic and most of nonlinear damage theories need lots
of computational effort and require detailed information such as

material parameters, crack geometry, crack growth laws and other
mechanisms. However, in engineering applications, the informa-
tion is usually not fully available. Because Miner’s rule is simple
to apply and seems to give not so much worse results than the oth-
ers, it has remained widespread engineering application. Besides,
many experimental analyses [11] have shown that Miner’s rule
can predict the mean value of fatigue life under random loading
for engineering structure at some accurate degree.

In recent decades, many probabilistic approaches have been
proposed to describe the statistics of fatigue life and damage under
constant and variable amplitude loadings. Birnbaum et al. [12]
introduced a statistical interpretation of Miner’s rule from a prob-
abilistic point of view. Shimokawa et al. [13] used p–S–N curves
and Miner’s rule in statistical terms to analyze the fatigue reliabil-
ity for two-step fatigue tests, with both lognormal and Weibull
distribution assumption of fatigue life. Rowatt et al. [14] employed
p–S–N curves and Markov chain models for life prediction of
composite laminates. Pascual et al. [15] proposed a random fati-
gue-limit model to describe the scatter in S–N curves obtained
by constant amplitude fatigue tests. Shen et al. [16] used lognormal
distribution and Miner’s rule for fatigue life prediction under a
narrow-band Gaussian stochastic stress process.

In this paper, assuming fatigue life is distributed as Weibull dis-
tribution, a statistically consistent damage criterion is first formu-
lated based on linear Miner’s rule

P
1/N = 1 from a probabilistic

perspective, where a consistent index is introduced. Then, through
some transformation, a statistically consistent fatigue damage
model for constant amplitude loading has been proposed, which
is next extended to the model under variable amplitude loading.

As for the critical damage Dc, i.e. the damage value at failure,
there are mainly two points of view: one, Dc is deterministic, equal
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to or smaller than unit; the other, Dc is a random variable, with
mean value equal to unit. In the paper, Dc is assumed as a random
variable in the derivation of a statistically consistent damage crite-
rion, while it is taken as unit in the statistical damage model trans-
formed by the previous damage criterion.

In addition, the service loading of mechanical components is
commonly random in practice, and among various cycle counting
techniques, rain flow counting method is mainly used. In this pa-
per, only constant amplitude loading and multi-level cyclic loading
are applied, thus the rain flow counting method is unnecessary.
However, it is still introduced here for the generality of practical
applications of the statistical fatigue damage model.

2. A statistically consistent fatigue damage model based on
Miner’s rule

2.1. Weibull distribution

Weibull distribution is one of the most widely used lifetime dis-
tributions in reliability engineering, which is versatile to take on
the characteristics of other types of distributions. And it is gener-
ally assumed that fatigue life of material follows two-parameter
Weibull distribution. For the next statistical analysis of fatigue
model, related knowledge of Weibull distribution is firstly re-
quired, such as Monte Carlo sampling [17], random sampling tests
[17,18], parameter estimation [19,20] and goodness of fit tests
[21,22].

Assuming X–W(a, b), its probability density function (PDF) and
cumulative distribution function (CDF) can be written as:

f ðxÞ ¼ a
b

x
b

� �a�1

exp � x
b

� �a� �
; x P 0 ð1Þ

FðxÞ ¼ 1� exp � x
b

� �a� �
ð2Þ

where a and b are the shape and scale parameters, respectively.
The mean value l and standard deviation r can be obtained

according to the following equation.

l ¼ b � C 1þ 1
a

� �
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It is common to assume that shape parameter a of fatigue life is
determined by material properties and scale parameter b depends
on applied loadings. Through lots of experimental analyses, it has
been shown that the modal number of shape parameter can be ta-
ken as 4 and 1.25 for metallic and composite materials, respec-
tively [23].

2.2. A statistically consistent fatigue damage criterion

Linear Miner’s damage criterion is widely used in engineering,
which for constant amplitude loading takes the form of

Xn

i¼1

1
Ni
¼ 1 ð4Þ

where Ni is the fatigue life of some material under some stress level,
which actually obeys some distribution; n is the number of load cy-
cles in fatigue test; and the critical damage value is assumed to be 1.

Obviously, when N is taken as a constant, such as the mean va-
lue of life distribution, Eq. (4) can be simplified to the form of n/
N = 1, which is the most common Miner’s damage criterion and
the equation is always true when n = N. However, in fact, N has
probability characteristics, thus n is correspondingly statistical
rather than deterministic.

With a given distribution of N, the equation can be called statis-
tically consistent if n obtained from Eq. (4) with Monte Carlo sam-
pling method is approximate to N with respect to probability
distribution. In practice, fatigue life N is exactly reflected in the
number of load cycles to failure, so it is necessary that the damage
criterion be statistically consistent, however, it can be verified that
Eq. (4) is statistically inconsistent as follows.

Assuming N–W(a, b), a = 4, b = 10,000 and accordingly l = 9064,
r = 2542.9 based on Eq. (3), through sufficient random samplings
of Eq. (4), here 1000 times is enough, 1000 different n can be ob-
tained and then statistics of n are calculated: l = 8150, r = 37. Note
that both the mean value and standard deviation are smaller than
that of original N, especially for standard derivation. Thus it can be
concluded that Eq. (4) is statistically inconsistent.

In order to make Miner’s damage criterion statistically consis-
tent, some probabilistic modification must be added to the original
form. To increase the mean value and standard deviation of n,
introducing a consistent index a (greater than 1) and a random dis-
turbance D to the left and right sides of Eq. (4) respectively, will re-
sult in

Xn

i¼1

1
Ni

� �a

¼ 1þ D; D ¼ Ni � l
l

ð5Þ

where Ni is a random fatigue life from some distribution, and l is
the mean value of the life distribution.

In Eq. (5), variable work absorption per cycle is defined as (1/
Ni)a. The right-hand side term (1 + D) is equivalent to the assump-
tion that the critical damage is a random variable. Assuming N–
W(a, b), (1 + D) can be described by W (a, b/l) distribution, with
mean value and standard derivation equal to 1 and r/l, respec-
tively, where r is the standard derivation of fatigue life N.

Assuming N–W(a, b), a = 4, b = 10,000, through large number of
Monte Carlo sampling tests, it is found that when consistent index
a is taken as 1.011, the mean values of nf and N can be comparable.
Repeating Monte Carlo sampling of Eq. (5) for 1000 times, the sta-
tistics of n can be obtained for comparison with original fatigue
life, including the maximum likelihood estimations of two param-
eters, the mean value and standard derivation. In order to verify
the generality of Eq. (5), another Weibull distribution with greater
skewness (skewness is a measure of the asymmetry of the proba-
bility distribution, and greater skewness indicates that the tail on
the right side is much longer than the left side.) is assumed,
a = 2, b = 10,000 and correspondingly, l = 8862, r = 4632.5,
a = 1.054 (determined by Monte Carlo sampling test). In Table 1,
there list statistics of n corresponding to the two assumed fatigue
lives, a = 4 and a = 2. In addition, the schematic comparisons of PDF
between N and n are illustrated in Fig. 1.

It can be noted that n is close to N with respect to the mean va-
lue and standard deviation, as well as the maximum likelihood
estimations of parameters a and b. Furthermore, in the goodness
of fit test with the original Weibull distribution, n has passed K–S
test and W2 test quite well. In addition, as shown in Fig. 1, the sche-
matic PDFs of N and n are quite close. Therefore, the new cumula-
tive damage criterion expressed in Eq. (5) can be considered
statistically consistent.

The consistent index a is closely related to statistical parame-
ters a and b of fatigue life distribution and can be solved by Monte

Table 1
The statistics of n corresponding to two assumed fatigue lives.

The original N â b̂ l̂ r̂

a = 4 3.9 9980 9033 2592.8
a = 2 2 9930 8800 4600
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