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a b s t r a c t

Continuummechanics codes modeling failure of materials historically have considered those materials to
be homogeneous, with all elements of a material in the computation having the same failure properties.
This is, of course, unrealistic but expedient. But as computer hardware and software has evolved, the
time has come to investigate a higher level of complexity in the modeling of failure. The JohnsoneCook
fracture model is widely used in such codes, so it was chosen as the basis for the current work. The CTH
finite difference code is widely used to model ballistic impact and penetration, so it also was chosen for
the current work.

The model proposed here does not consider individual flaws in a material, but rather varies a mate-
rial’s JohnsoneCook parameters from element to element to achieve inhomogeneity. A Weibull distri-
bution of these parameters is imposed, in such a way as to include a size effect factor in the distribution
function. The well-known size effect on the failure of materials must be physically represented in any
statistical failure model not only for the representations of bodies in the simulation (e.g., an armor plate),
but also for the computational elements, to mitigate element resolution sensitivity of the computations.

The statistical failure model was tested in simulations of a Behind Armor Debris (BAD) experiment, and
found to do a much better job at predicting the size distribution of fragments than the conventional
(homogeneous) failure model. The approach used here to include a size effect in the model proved to be
insufficient, and including correlated statistics and/or flaw interactions may improve the model.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Continuum mechanics codes using Lagrangian frames and those
using Eulerian frames have achieved great success in modeling
ballistic impact and penetration. One widely-used model for deter-
mining material failure in such simulations is the JohnsoneCook
fracture model [1], which computes a path-dependent failure using
the following relation for current failure strain:

3f ¼
h
D1 þ D2e

D3s* �½1þ D4ln_3
*�½1þ D5T

*�: (1)

In Eq. (1), D1, D2, D3, D4 and D5 are material constants. s* is the
ratio of mean stress to the vonMises equivalent stress, _3* is the non-
dimensional strain-rate, and T* is the homologous temperature.

Historically, these continuum mechanics codes applied the
JohnsoneCook fracture model in a deterministic fashion throughout

the problem domain; i.e., for a particular material, the same set of
material constants applies to every element or cell1 containing that
material. However, because of heterogeneity, real materials are not
perfectly deterministic, but instead exhibit variations of properties,
for example fracture properties, throughout the volume of material.
A recent approach [2,3] applied statistical variations of fracture
properties to materials in a Lagrangian frame. Here, the approach is
applied to the JohnsoneCook fracture model in an Eulerian code,
CTH [4], and extended to account for size effects, a step toward the
ultimate goal of an element-size-invariant failure criterion for
consistent predictions across a spectrum of system geometries. The
goal of the presentwork is to illustrate the dramatic improvement in
the character of results (especially irregular failure patterns) ach-
ieved when heterogeneous failure properties and scale effects are
incorporated into a simulation. This should lead to the realization
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1 The term element is usually applied in the context of a Lagrangian formulation,
while the term cell usually applies to the Eulerian computational unit. In the
following discussions, the term element will be used for both applications, for
simplicity.
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that better experimental characterization of the failure distribution
is needed, and provide motivation to obtain that data.

2. Statistical variation of the initial failure strain

Identification of constraints is important if one seeks to
statistically perturb material parameters. If, for example, a Weibull
perturbation is applied to a material parameter, then realizations
of that parameter will vary from zero to infinity, and such varia-
tion must not violate any fundamental constraints on material
parameters.

Consider a specimen at room temperature in a state of zero
pressure (mean stress), being strained at a rate of 1/s. The strain at
failure of such a specimen will be termed initial failure strain,3f0.
Under these conditions, Eq. (1) reduces to the following expression
for the initial failure strain:

3f0 ¼ D1 þ D2: (2)

Admissible JohnsoneCook material parameters must obey the
constraint D1 þ D2 > 0 to ensure that a positive failure strain is
required to induce failure. Satisfaction of this constraint has been
confirmed for numerous materials for which JohnsoneCook data
sets are available [5]. However, some of those materials have
negative values for D1. Therefore, D1 and D2 may not be individu-
ally perturbed according to a Weibull distribution since there will
exist realizations violating the constraint D1þD2 > 0. However,
their sum, the initial failure strain 3f0, can be perturbed via aWeibull
distribution (or any other distribution for which negative realiza-
tions are impossible2).

Weibull [6] considered the statistics of failure events (i.e., failure
of systems), for example the fatigue life of a rotating steel beam.3

Here, the applicability of Weibull statistics at an element level
within a shock physics code is explored under the following
progression of assumptions:

The failure strain 3f in an elemental volume of the system is
strongly dependent on the criticality4 of the flaws in that element.

The criticality of an isolated flaw is not necessarily Weibull-
distributed, but a Weibull distribution is reasonable for an
ensemble of flaws of random orientations if the population
contains many small flaws and relatively few large flaws [7].

The failure strains of the ensemble of elements making up the
system are also Weibull-distributed [7].

Since 3f ¼ f ð3f0Þ, the initial failure strain in each of the many
volume elements making up the system is alsoWeibull-distributed.
This assumption differs from the approach in [3], as discussed later.

Therefore the initial failure strain will be Weibull-distributed
throughout the elements of a material.5

Eq. (1) does not explicitly contain the initial failure strain; to use
a statistically varying initial failure strain, Eq. (1) is rearranged
algebraically to the following form:

3f ¼
h
3f0 � D2

�
1� eD3s*

�i
½1þ D4ln_3

*�½1þ D5T
*�: (3)

As mentioned, the failure strain in the standard JohnsoneCook
model is deterministic. However, variations in micromorphology
of a material lead to variations in failure strain. Probabilities
associated with such variations lead to a dependence of failure
strain on the specimen size. Larger samples are more likely to
contain a critically oriented or critically large flaw, making larger
samples statistically more prone to failure at a given strain. Below,
a mathematical framework [7] is developed to account for these
macroscale effects of variability in flaw morphology without
requiring actual details about crack sizes, shapes, orientations, or
clustering.

Consider a sample of volume V containing exactly one flaw. Let
the sample be subjected to a prescribed strain, 3. Whether or not
the sample will fail is uncertain because of uncertainties in flaw
morphology such as crack orientation, size, or shape. If, for
example, the strain state is tensile in one direction and compressive
in another, the sample is certainly safe from failure if the crack
normal is aligned with the compressive direction, but flaw orien-
tations are unknown. Even when all principal strains are
compressive, a flaw can fail under shear if it is critically oriented
and sufficiently large. However, flaw size is unknown.

Regardless of the basis of uncertainty, let g(3) symbolically denote
the probability that the sample is safe from failure at the applied
strain 3 (this single-flaw probability is not expected to be Weibull-
distributed). Under a non-interaction assumption, a sample con-
taining N flaws is safe from failure only if every flaw in the sample is
safe from failure, giving the probability that the sample is safe to be
Ps ¼ ½gð3Þ�N . This is expected to be an upper-bound since flaw
interactions are expected to reduce the likelihood that the sample is
safe. For elastic properties, a non-interaction assumption is valid to
very high crack densities [8], but such cannot be assumed for failure
properties.

Let n ¼ N/V denote the flaw density and let Pf denote the
probability of failure. Thus, for the non-interaction model,

Pf ¼ 1� Ps ¼ 1� ½gð3Þ�N ¼ 1� ½gð3Þ�nV : (4)

To allow for the effect of flaw interactions in an approximate
way, suppose that an increase in flaw density causes Pf to increase
in a way similar to intensifying the strain in a non-interaction
model. Then the non-interaction model can be generalized to
account for flaw interactions by multiplying the strain by an
intensifier function H(n) to give

Pf ¼ 1� fg½3$HðnÞ�gnV : (5)

The strain intensifier function H(n) is expected to be a mono-
tonically increasing function of crack density so that an increase in
crack density would lead to an increase in apparent strain in a non-
interaction model and, therefore, an increase in Pf.

Unfortunately, both the g and H functions, as well as the flaw
density n, are unknowable from a practical perspective. As previ-
ously argued, a Weibull distribution is to be assumed for the
multiple-flaw elements. The Weibull distribution function [6] is

Pf ¼ 1� exp½�fð3Þ�; (6)

where ɸ(3) is a material function to be measured in the laboratory
by repeated testing of the strain at failure. Applying the definition
of a Weibull distribution, the material function in Eq. (6) would be
of the form

fð3Þ ¼
�3
a

�m
: (7)

2 For this reason, a Gumbel distribution would be inappropriate since its reali-
zations have no lower bound.

3 Subsequently, system will refer to a component of a simulation, e.g., an armor
plate or a penetrator.

4 Criticality is the propensity (or probability) of a flaw to initiate failure of the
system under a given state of stress, for example the size of the flaw might affect its
criticality.

5 To be sure, these assumptions are tenuous, as little or no data exists onwhich to
base an understanding of the correct distribution of flaws in a material. And the
distribution may well be different for different materials, e.g., ceramic versus metal.
Nontheless, applying a Weibull distribution to the initial failure strain is a reason-
able starting point, from which the efficacy of such a statistical modeling approach
may be judged. A desirable outcome of the present work is to motivate experi-
menters to obtain such data.
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