Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/biochemsyseco

Acylated cyanidin 3-sambubioside-5-glucosides in the purple flowers of *Hesperis matronalis* L. (Brassicaceae)

Fumi Tatsuzawa*

Laboratory of Olericultural and Floricultural Science, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan

ARTICLE INFO

Article history: Received 1 February 2012 Accepted 3 June 2012 Available online 7 July 2012

Keywords: Hesperis matronalis Brassicaceae Acylated cyanidin 3-sambubioside-5-glucoside p-Coumaric acid Caffeic acid Ferulic acid Sinapic acid Malonic acid

1. Subject and source

Recently, the flowers of plants in the Brassicaceae are known as the sources of complicated anthocyanins, such as acylated 3-sambubioside-5-glucosides of pelargonidin, cyanidin and delphinidin in *Cheiranthus cheiri*, *Heliophila corono-pifolia*, *Lobularia maritima*, *Lunaria annua*, *Matthiola incana* and *Orychophragmus violaceus* (Honda et al., 2005; Saito et al., 1995, 1996, 2011; Tatsuzawa et al., 2006, 2007, 2010a,b, 2012a), acylated 3-(3^X-glucosylsambubioside)-5-glucosides of cyanidin in *Malcolmia maritima* (Tatsuzawa et al., 2008a) and acylated 3-sophoroside-5-glucosides of pelargonidin, cyanidin and peonidin in *Raphanus sativus*, *Iberis umbellata*, *Moricandia ramburii* (Saito et al., 2008; Tatsuzawa et al., 2008b, 2010b, 2012b).

In the present study, I report two new acylated cyanidin 3-sambubioside-5-glucosides from flowers of *Hesperis matronalis* (Sweet rocket) together with two known acylated cyanidin 3-sambubioside-5-glucosides.

The seeds of *H. matronalis* were purchased from the Johnsons seeds Co. Ltd. (UK), and grown in the experimental farm of Iwate University. Fresh purple flowers [Purple 78C by RHS colour chart and its chromaticity values ($L^* = 57.14$, $b^*/a^* = -27.01/40.24 = -0.67$) by NR-1 color difference meter (Nippon Denshoku Co. Ltd., Japan)] were collected in summer. Voucher specimens are deposited at Iwate University Museum (IUM).

^{*} Tel./fax: +81 19 621 6145.

E-mail address: fumi@iwate-u.ac.jp.

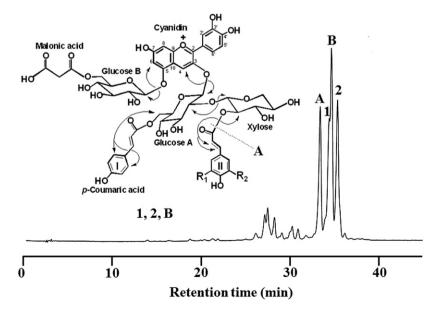
^{0305-1978/\$ –} see front matter \odot 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bse.2012.06.001

2. Previous work

There are no previous reports on acylated anthocyanins from the genus Hesperis.

3. Present study

3.1. Isolation and identification of anthocyanins


By the analysis of HPLC [HPLC was performed on an LC 10A system (Shimadzu), using a Waters C18 (4.6×250 mm) column at 40 °C with a flow rate of 1 ml/min, the eluate was monitored at 530 nm. The eluant was applied to a linear gradient elution for 40 min from 20 to 85% solvent B (1.5% H₃PO₄, 20% HOAc, 25% MeCN in H₂O) in solvent A (1.5% H₃PO₄ in H₂O)], 4 major anthocyanin peaks (**1**: ranging from 16.4% of the total anthocyanin contents observed from the HPLC peak area at 530 nm, **2**: 22.6%, **A**: 19.3%, **B**: 25.2%) were observed in the MAW (MeOH–HOAc–H₂O, 4:1:5, v/v/v) extract from the purple flowers of *H. matronalis* (Fig. 1).

Dried purple petal of *H. matronalis* (10 g) were immersed in 5% HOAc–MeOH (acetic acid–methanol, 5:95, v/v, 500 ml), kept at 4 °C for 1 day and extracted. The extract was concentrated to 50 ml. Anthocyanin pigments in the concentrated extract were purified by prep. HPLC [HPLC was performed on an LC 10A system (Shimadzu), using a Waters C18 (19×150 mm) column at 40 °C with a flow rate of 4 ml/min, the eluate was monitored at 530 nm. The eluant was applied to a linear gradient elution for 10 min from 60 to 70% solvent B in solvent A] after thin layer and paper chromatography (BAW: BuOH–HOAc–H₂O, 4:1:2, v/v/v and 15% HOAc). Finally, pigments **1** (*ca*. 5 mg), **2** (*ca*. 7 mg), **A** (*ca*. 8 mg) and **B** (*ca*. 17 mg) were obtained as the major anthocyanins.

Acid hydrolysis of pigments **1**, **2**, **A** and **B** gave cyanidin as their anthocyanidin (Harborne, 1984). These anthocyanins also showed glucose and xylose as their sugar component and *p*-coumaric acid and malonic acid as their acid by acid hydrolysis. Moreover, caffeic acid was detected in the hydrolysates of **1**, ferulic acid was detected in those of **2** and sinapic acid was detected in those of **B** by HPLC, respectively.

By alkaline hydrolysis, pigments **1**, **2**, **A** and **B** yielded cyanidin 3-sambubioside-5-glucoside as their deacyl anthocyanin. The deacyl anthocyanin structure was identified in direct comparison by the analyses of co-TLC and co-HPLC with authentic cyanidin 3-sambubioside-5-glucoside which was prepared from *Lunaria annua* (Tatsuzawa et al., 2006).

The pigments **A** and **B** were easily identified to be cyanidin 3-[2-(xylosyl)-6-(trans-p-coumaroyl)-glucoside]-5-[6-(malonyl)-glucoside] and cyanidin <math>3-[2-(2-(trans-sinapoyl)-xylosyl)-6-(trans-p-coumaroyl)-glucoside]-5-[6-(malonyl)-glucoside] with authentic samples obtained from*M. incana*and*L. annua*(Saito et al., 1995; Tatsuzawa et al., 2006, 2012a) by co-TLC, co-HPLC, UV–VIS spectrometry. Moreover, elemental components of these pigments were confirmed by measuring their high resolution fast atom bombardment mass spectra (HR-FABMS) and the structures of these pigments were confirmed by analysis of their ¹H NMR measurements [400 MHz for ¹H spectra in CF₃COOD-DMSO-*d*₆ (1:9)] including ¹H–¹H correlation

Fig. 1. HPLC profile (530 nm) and structure of acylated anthocyanins isolated from the purple flowers of *Hesperis matronalis*. Observed main NOEs are indicated by arrows. **1**: pigment **1**, $R_1 = OH$, $R_2 = H$; **2**: pigment **2**, $R_1 = OCH_3$, $R_2 = H$; **B**: pigment **B**, $R_1 = OCH_3$, $R_2 = OCH_3$.

Download English Version:

https://daneshyari.com/en/article/7770121

Download Persian Version:

https://daneshyari.com/article/7770121

Daneshyari.com