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Abstract

This paper addresses the usage of inverse power laws in accelerated fatigue testing under wide-band Gaussian random loading. The
aim is not at predicting an absolute value of fatigue life but assessing the fatigue damage relative accumulation. The widely accepted
inverse power scaling laws in fatigue damage assessment is discussed, reviewing the engineering standards and pointing out their inherent
limitations. A physically consistent general scaling law is obtained by rigorous mathematical analysis in the framework of random vibra-
tion theory and the rules of safe-life fatigue analysis. Simplifications of the general scaling rule are presented, highlighting conditions
under which the current standard practice could provide a correct an acceptable estimation of the relative fatigue damage accumulation.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Several methodologies have been developed for predict-
ing fatigue life of engineering components under random
vibration loads. These methods may be divided into two
main groups depending on the parameters and data used
in the analysis. The time-domain based analysis, which
depends mainly on the stress or strain amplitudes in the
time history, has been well-established (e.g. [1–3]) and
widely accepted. In a time-domain approach, a cycle count-
ing procedure and, e.g. the rainflow algorithm [4,5], a
cumulative damage rule are employed. The only difference
with the non-vibration applications is that random loading
causes stress ranges of all magnitudes from zero to a set
maximum, which must be specified via probability density
distributions and the damage summation must be evalu-
ated as an integral. However computer simulation of all
possible stress-time history samples is very time consuming
and at the design stages the full stress history may not be
available.

On the other front, the frequency domain analyses are
now an accepted practice [6–10]. These methodologies are
based on expressing the fatigue life as a function of the
spectral characteristics of the excitation. However, in spite
of considerable efforts, no general analytical solution is yet
available; damage accumulation in frequency domain is
currently described by approximated laws. Most of the
existing techniques are limited to the stationary Gaussian
loading histories and there is no general agreement on
how the effects of multi-axial loading on fatigue life can
be accounted for.

Apart from random loading effects, many other random
factors also influence fatigue damage accumulation, e.g.
the randomness of material properties and randomness
of defect distribution in components. It is recognized that
the calculation of fatigue damage accumulation in abso-
lute terms, i.e. life cycles, is still extremely difficult due
to the randomness of the above factors. On the other
hand, even for the simple constant or variable amplitude
loading conditions, large scatters exist in fatigue life pre-
diction. This is mainly due to the inherent limitation of
the linear cumulative damage rule, i.e. the Miner’s law,
which is also widely employed in vibration fatigue analysis.
Numerous statistical studies and fatigue tests have been
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conducted to find the statistical distribution of the damage
[11].

This paper is not about proposing another method for
predicting fatigue life. Rather, it aims at providing further
insight into the inverse power scaling law models, which
allow estimating the relative damage accumulation based
on laboratory tests. It is customary to perform accelerated
random vibration testing in a laboratory environment,
which in terms of loading is considerably more severe than
the operative one; the operative life duration is then esti-
mated by relating the structural fatigue life tested in the
laboratory condition by a proper scaling factor. The scal-
ing law depends on the ratio of the load severities, e.g.
using the root mean square values, of the two environments
and also on some empirical or semi-empirical constants,
which are determined from either the previous design or
usage experience. A widely employed inverse power law
in the aerospace industry to correlate the laboratory tests
to the real service life is as follows [12–14]:

T s

T r
¼ gr

gs

� �a

ð1Þ

where Tr is the fatigue life in terms of time duration in an
actual operative environment, Ts the fatigue life corre-
sponding to accelerated laboratory test, gr and gs are the
root mean square (RMS) values of the actual and lab sim-
ulated accelerations (or loads), respectively, applied to the
structures. The exponent a represents the slope of the mate-
rial S–N curve in log–log coordinates. The inverse power
scaling law in Eq. (1) was derived from the Coffin–Man-
son’s model of fatigue life [15,16]. It is worth stressing that
Eq. (1) is implemented in the MIL Standard 810 [17], which

specifies the lab testing environment for the certification of
military aerospace sub-systems in the US; this standard is
also commonly adopted by countries belonging to the
NATO. Eq. (1) simply states that the testing time in the
laboratory environment is inversely proportional to the ap-
plied force RMS via exponent a. Although it has been
recognised that the exponent a is the slope of the material
S–N curve, the assumptions made to derive Eq. (1) are ex-
tremely reductive for the following reasons:

� Coffin–Manson’s model [15] is strictly valid for a uni-
axial applied force, i.e. a simple tensile/compressive
stress, while Eq. (1) is applied for the safe-life estimation
of complex structures, for which the operative loading
and the resultant stress field may be multi-axial;
� complex structures may be made of several different

materials, each having a characteristic sensitivity to fati-
gue damage accumulation;
� there is no rigorous proof that the acceleration RMS are

sufficient to fully describe the random vibration environ-
ment, especially for wide-band excitation spectra;
� under random loading the material S–N curve exponent

is generally dependent on the spectral properties of the
excitation [18,19]; standard fatigue tests on materials
are performed with sinusoidal excitation, but the slope
of the S–N curve for an assigned material changes under
random loading. The methodology developed in this
paper is based on considering the S–N curve under ran-
dom loading condition.

Therefore, in the light of the complexity of the phenome-
non under investigation, the very simple scaling law in Eq.

Nomenclature

Tr fatigue life in the operative environment
Ts fatigue life in the testing condition
g acceleration root mean square value (RMS)
gr acceleration RMS in the operative environ-

ment
gs acceleration RMS in the testing environment
�g� ¼ �g=g normalized mean value of the acceleration
ĝ� ¼ ĝ=g normalized acceleration amplitude
a inverse power law exponent
m frequency
Sr(m) power spectral density (PSD) of the operative

acceleration
Ss(m) PSD of the testing acceleration
Sx,y(m) cross PSD associated with the time dependent

variables x and y

k(r),p pth order spectral moment of the operative
PSD

N(r),0 number of zero-crossings with positive slope
per unit time for the operative acceleration his-
tory

N(r),p number of peaks per unit time for the opera-
tive acceleration historyeN 0 total number of zero-crossings with positive
slope

RRF
i;j rainflow matrix

M structural mass matrix
C structural damping matrix
K structural stiffness matrix
S matrix for expressing the von Mises stress in

spectral form
F(t) vector of external excitation forces
Hs(m) harmonic response associated to the sth mode
� vector representing the six independent com-

ponent of the strain tensor
r vector representing the six independent com-

ponent of the stress tensor
a external acceleration vector
req von Mises equivalent stress
~r RMS of the von Mises equivalent stress
b Basquin’s fatigue exponent
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