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Indoleamine 2,3-dioxygenase is a heme-containing enzyme implicated in the down regulation of the
anti-tumor immune response, and considered a promising anti-cancer drug target. Several pharmaceuti-
cal companies, including Pfizer, Merck, and Bristol-Myers Squibb, are known to be in pursuit of IDO inhi-
bitors, and Incyte recently reported good results in the phase II clinical trial of the IDO inhibitor
Epacadostat. In previous work, we developed a series of IDO inhibitors based on a sulfonylhydrazide core
structure, and explored how they could serve as potent IDO inhibitors with good drug profiles. Herein, we

ffé’;‘l’g;‘rj;ne 2 3-dioxveenase disclose the development of the 4-bromophenylhydrazinyl benzenesulfonylphenylurea 5k, a potent IDO
Inhibitor ! Ve inhibitor which demonstrated 25% tumor growth inhibition in a murine CT26 syngeneic model on day 18

with 100 mg/kg oral administration twice daily, and a 30% reduction in tumor weight. Pharmacodynamic
testing of 5k found it to cause a 25% and 21% reduction in kyn/trp ratio at the plasma and tumor, respec-
tively. In the CT26 tumor model, 5k was found to slightly increase the percentage of CD3* T cells and

4-Bromophenylhydrazinyl
benzenesulfonylphenylurea
In vivo target inhibition

Tryptophan lymphocyte responsiveness, indicating that 5k may have potential in modulating anti-tumor immunity.
Kynurenine These data suggest 5k to be worthy of further investigation in the development of anti-tumor drugs.
Anti-tumor

© 2018 Elsevier Inc. All rights reserved.

1. Introduction launched in 2014, target programmed death-1 (PD-1) [2].

Atezolizumab and avelumab, launched in 2016 and 2017 respec-

Cancer is a leading cause of death, accounting for 8.2 million
deaths in 2012 [1]. Annual cancer cases are estimated to increase
to 22 million over the next two decades [1], increasing demand
for anti-cancer drugs. Recently, immunotherapy has emerged as
a promising new strategy for cancer treatment. For example, Ipili-
mumab, a monoclonal antibody that blocks cytotoxic T lymphocyte
antigen 4 (CTLA-4), was launched in 2011 for treatment of patients
with metastatic melanoma. Nivolumab and Pembrolizumab, both
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tively, target PD-L1. All of these biologics downregulate the anti-
tumor immune response in the tumor microenvironment [3,4].

In addition to these well-studied immune-oncology targets
(CTLA-4, PD-1, and PD-L1), indoleamine-2,3-dioxygenase (IDO) is
also implicated in the down regulation of the anti-tumor immune
response in the tumor microenvironment. The over-expression of
IDO has been found in several cancer types, e.g., colorectal cancer,
pancreatic cancer, non-small cell lung cancer, and glioblastoma;
and was correlated with both tumor progression [5] and poor
clinical outcome [6]. IDO was overexpressed in tumor cells upon
exposure to pro-inflammatory cytokines, such as interferon-y
(INF-vy), that are produced by stimulated lymphocytes [7].

IDO activation leads to a tryptophan deficit, which induces the
downregulation of activating natural killer (NK) cell receptor on NK
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Fig. 1. Previously reported N'-(4-Bromophenyl)-2-0xo0-2,3-dihydro-1H-benzimida-
zole-5-sulfonylhydrazide(1) as an IDO inhibitor.

1

cells and inhibition of cytotoxic T cells by promotion of cell cycle
arrest and apoptosis in the tumor microenvironment [8-10]. IDO*-
DCs modulate immune responses by the induction of lymphocyte
cell cycle arrest, downregulation of the T cell receptor (TCR):-
chain, and induction of apoptosis, thereby preventing clonal
expansion of antigen-specific lymphocytes [11-14]. On engage-
ment with IDO*DCs, lymphocytes become unreactive, and naive
CD4" T cells are driven towards conversion into regulatory T (Treg)
cells [5,6,11,15-18]. These IDO-positive DCs also inhibit activation
of T cells by neighboring DCs that do not express IDO - a phe-
nomenon called ‘bystander suppression’ [19,20]. IDO-positive
DCs also inhibit natural killer T (NKT) cells and B cells. Invariant
NKT cells change their cytokine secretion profile to a type 2 T
helper cell pattern, and plasma cells decrease antibody production
[14,21,22]. Thus, upregulation of IDO in the tumor microenviron-
ment causes the tumor to escape immune surveillance, allowing
its further development; whereas restriction of IDO activity leads
to suppression of tumor progression, and restoration of anti-
tumor immunity [6,17,23-26]. These findings establish IDO as an
important molecular target for anticancer immunotherapeutics.
Epacadostat, developed by Incyte Corporation [26-28], is the
most advanced known IDO inhibitor, and is currently in phase 3
clinical trials. In a recent phase 2 clinical study, Epacadostat was
found to stabilize the disease progression of myelodysplastic
syndromes of 12/15 patients for up to 12 months [29]. In addition,

a R =n-butyl g R= _§QCH3 IR
b R = cyclohexyl

F OCH;

dR= §© RS ‘§QOCH3 n R
eR=—§@CI jR=-§© o R
fR=—§© kR=—§©—CN p R

various classes of IDO inhibitors are being developed by several
biotech companies [30-50].

Ongoing clinical studies of IDO inhibitors have sought to deter-
mine their efficacy both as single agents, and when administered in
combination with either traditional chemotherapies, or with other
cancer immunotherapies [31]. Using high-throughput screening,
we discovered N'-phenethylbenzenesulfonylhydrazide as a poten-
tial IDO inhibitor, and subsequent structure-activity relationship
(SAR) studies on the phenyl benzenesulfonylhydrazide scaffold
resulted in the discovery of several compounds with potent IDO
inhibitory activity in the nanomolar range [51,52], including com-
pound 1. Our previous work revealed that bromo-substitution at
the para-position of the phenylhydrazinyl moiety and 2-oxo-
benzimidazolesubstituent at the benzenesulfonyl end resulted in
potent enzymatic activity against IDO as well as cellular activity
(see Fig. 1) [51]. However, although compound 1 had potent
in vitro activity, it was inactive in vivo, having unfavorable drug
exposure (AUCo_inr. = 594 ng/mL h), high plasma clearance (57.1
mL/min/kg), short half-life (0.8 h), and poor oral bioavailability
(13%) [52]. Herein, we disclose further lead optimization of phenyl
benzenesulfonylhydrazide scaffold, wherein the benzenesulfonyl
moiety was substituted with a variety of open chain substituted
ureas, to give a series of 4-bromophenylhydrazinylsulfonylpheny
lureas; the SAR, pharmacodynamic, pharmacokinetic, and animal
pharmacology studies of which are reported.

2. Chemistry

The synthesis of 4-bromophenylhydrazinylsulfonylphenylureas
5a-s is depicted in Scheme 1. 4-(Chlorosulfonyl)phenyl isocyanate
(3) was reacted with primary amines 2a,b and anilines 2c-s to
afford the 4-chlorosulfonylphenyl urea 4a-s [53], which under-
went coupling with 4-bromophenylhydrazines 4a-s to give the
corresponding 4-bromophenylhydrazinylsulfonylphenylureas 5a-
s in low to moderate yield (6-70%) [51,52]. The enzymatic-based
and HeLa cell-based IDO activities for compounds 5a-s were eval-
uated according to the procedures reported by us previously
[51,52], and the results are shown in Table 1.
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Scheme 1. Synthesis of 4-bromophenylhydrazinyl benzenesulfonylphenylureas (Reagents and conditions: (a) CH,Cl,, —78 °C, 1-1.5 h for 4a,b; THF or CH5CN, rt, 4 h-17 h for

4c-s (14-99%). (b) 4-bromophenyl hydrazine, CH,Cl, or DMF, rt, 3-18 h (6-70%)).
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