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a b s t r a c t

The calculation of the energy spectrum and absorption coefficients of quantum dot nanostructured
intermediate band solar cells using the Empiric K �P Hamiltonian method and its agreement with
experimental data are summarized. The well established Luttinger Kohn Hamiltonian modified by Pikus
and Bir for strained material, such as quantum dot arrays, is presented using a simplified strain field that
allows for square band offsets. The energy spectrum and absorption coefficients are calculated with this
new Hamiltonian. With the approximations made the energy spectrum results to be exactly the same but
the absorption coefficient fits experiments less accurately. The computer time using the latter Hamil-
tonian is much longer than the former one.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The intermediate band (IB) solar cells (SC) [1] include a band or
set of levels situated in the bandgap of an ordinary semiconductor.
These allow for sub-bandgap quantum efficiency using the IB as a
stepping stone for electron–hole generation. IBs may be formed by
the states of the conduction band electrons confined by quantum
dots [2]. Much of the activity associated with this topic uses
semiconductors with zincblende crystal structure.

For a sound understanding of the quantum dot (QD) IBSC
operation, a model for the calculation of the light absorption
mechanisms is very convenient. Simplicity of use and capacity of
feedback with the device engineers is very desirable. The Empiric
K � P Hamiltonian (EKPH) has been developed with this purpose [3,4].

The usual way of approaching this problem when using
nanostructured zincblende materials is the use of the eight band
Luttinger Kohn (LK) [5,6] Hamiltonian modified by Pikus and Bir
(PB) [7,8] which accounts for the strain in the lattice. This is a
variety of the K �P method introduced by Dresselhaus Kip and
Kittel [9] and extensively developed by Kane [10,11] for calcula-
tions of semiconductor band structures.

However, in the used form, the EKPH method is much faster
and easy to handle than the LK–PB Hamiltonian (LKPBH) method.
The purpose of this paper is to compare the two methods.

Beyond this introduction, this paper is organized as follows.
Section 2 summarizes the theoretical bases of the K � P methods.
Section 3 describes the EKPH method leading to a 4-Band Hamilto-
nian matrix. Section 4 develops LKPBH in a way that makes it easily
comparable with the approximations used in the EKPH method; it
leads to an 8-Band Hamiltonian matrix. Section 5 evaluates the time
consumed by calculations based on both methods. Finally some
conclusions are drawn.

2. Theoretical background

K �P methods are based on developing a one-electron Hamilto-
nian into an orthonormal basis |0,v,k〉¼u0,v exp(ik � r)/√Ω where u0,
v(r) is a Γ-point Bloch function (GBF), which has the periodicity of
the lattice, v is the band index, k is an arbitrary wavevector of the
first Brillouin zone andΩ is the volume of calculation, which is large
with respect to the nanostructure under study. The 0 index refers to
the Γ point (k¼0). In this paper, we call this basis the standard basis.
For zincblende semiconductors, it is very common to use an eight
band renormalized matrix where the bands are the conduction band,
(cb) and three valence bands (VBs): the heavy hole (hh), the light
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hole (lh) and the spilt off (so) bands, each one double degenerated
due to two different signs for the spin projection. This is the
approach we will follow when using the LKPBH. The EKPH does not
take the spin into account, and so considers only four bands.

The introduction of a nanostructure of a new material
embedded in the host material induces an offset of the CB and VB
edges. These usually form confining potentials for the CB and VB
states. This offset is the potential to be used in the so called
effective mass equations
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wherem* is the effective mass and Ev,0(r) is the band edge variable
with the position because of the band offset introduced by the
nanostructure. The hole effective masses are negative and differ-
ent for the different bands (hh, lh, and so). Due to the negative
effective mass, a pedestal offset potential in the VBs has the same
confining properties of a well in the CB. These equations are
widely used by device physicists.

In this paper, the conduction band states are divided into two
groups, those in the bandgap of the host material, which form the
IB (the IB is formed of cb states) and those within the conduction
band of the host material which are the properly-speaking con-
duction band (CB) states.

The utilization of the effective mass equations requires the use
of the integral factorization rule, which states that [12]
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where f is a slowly varying function with negligible variation
within a crystal unit cell, and g is a function with the translational
periodicity of the lattice. Ωcell is the unit cell volume. If this is
fulfilled for the so-called envelope functions Ψv and GBFs u0,v
respectively, both used in the next equation, the one-electron
eigenfunctions are
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For the case that at least one of the wavefunctions is confined,
the photon absorption coefficient by QDs is given by [13]
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where nref is the index of refraction of the material involved, 2a
and 2b are the dimensions of the QD base, Fs is the coverage factor
of each QD layer and Nl is the number of layers per unit length in
the growth direction. Eline is the photon energy and ε is the
polarization vector. The super index max means that the state in
the upper level is empty of electrons and the state in the lower
level is full of them. The fraction of full and empty states will be
factors in the calculation of the absorptions. In some cases, an
additional factor of 2 will appear if transitions between spin up
states and spin down states are to be added.

If the integral factorization rule is fulfilled, the dipole element
of matrix for photon induced transitions depends only on the
envelopes, as follows [3]:
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It is to be stressed that this expression is only valid if, at least,
one of the envelopes is bound and fades at the infinite. In this
paper the wavefunctions corresponding to the initial and the final
states are both bound.

3. The Empiric K�P Hamiltonian

Let us start with the case in which the spin is neglected (spin
and strain effects will be considered later). The Hamiltonian
development in the standard basis is [12]
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(≡ is used for the definition of a new symbol), with m0 being
the electron mass in vacuo. Different values of k could have been
considered for the initial and final states, but these matrix ele-
ments are all zero. Therefore, (H0) is a four dimensional matrix
whose terms are functions of k.

Let us assume for a moment a homogeneous material with a
zincblende lattice. The zincblende lattice belongs to the Td sym-
metry group. The cb GBF is called |S〉 and has a spherical symmetry
(it is an s function). At k¼0, the three VBs are degenerate and are
linear combinations of the three GBFs called |X〉, |Y〉 and |Z〉 with the
symmetry of x, y and z (see, e.g. [12] ) respectively (they are
p-functions). These functions fulfill the following:
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The rest of the Pv,v’ are zero. P0 is often called the Kane matrix
element. This, with the knowledge of the bandgap (Ecv,0¼Eg and
Ehh,0¼Elh,0¼Eso,0¼0), allows the matrix (H0) to be written in full
(round brackets represent a matrix). All the elements are analytical
functions of k and the eigenvectors and eigenvalues can also be
written (using Mathematica©) as analytical functions of k (see [4]).
The k-function eigenvalues are the so-called dispersion functions.

The analytical value of the CB eigenvalue (the dispersion
function) allows for an analytical expression of the CB effective
mass. By equating it with the experimental effective mass, the
value of P0 can be obtained. It is given by the following expression:
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Unfortunately, two of the three VB eigenvalue k-functions
(dispersion functions) are not acceptable because they present
positive effective masses. The main reason for it is that the spin–
orbit coupling has been neglected. The EKPH approximation is
based on building a new Hamiltonian matrix (HEKP) in which the
VB eigenvalues are parabolic dispersion functions obtained from
setting the experimental values of the effective masses and their
position at k¼0 (Ecv,0≡Eg, Ehh,0¼Elh,0¼ 0, Eso,0≡�Δ). That is,
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By their experimental origin, the Hamiltonian so formed
includes a number of effects that are neglected in (H0). In parti-
cular, it neglects the spin–orbit coupling and the strain effects
caused by the insertion of the QDs.
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