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a b s t r a c t

A novel three-parameter, elastic foundation model is proposed in this study to analyze interface stresses

of adhesively bonded joints. The classical two-parameter, elastic foundation model of adhesive joints

models the adhesive layer as a layer of normal and a layer of shear springs. This model does not satisfy

the zero-shear-stress boundary conditions at the free edges of the adhesive layer due to the inherent

flaw of the two-parameter, elastic foundation model, which violates the equilibrium condition of the

adhesive layer. To eliminate this flaw, this study models the adhesive layer as two normal spring layers

interconnected by a shear layer. This new three-parameter, elastic foundation model allows the peel

stresses along the two adherend/adhesive interfaces of the joint to be different, and therefore, satisfies

the equilibrium condition of the adhesive layer. This model regains the missing ‘‘degree of freedom’’ in

the two-parameter, elastic foundation model of the adhesive layer by introducing the transverse

displacement of the adhesive layer as a new independent parameter. Explicit closed-form expressions of

interface stresses and beam forces are obtained. The new model not only satisfies all boundary

conditions, but also predicts correctly which interface has the strongest stress concentration. The new

model is verified by continuum models existing in the literature and finite element analysis. The new

three-parameter, elastic foundation model provides an effective and efficient tool for analysis and

design of general adhesive joints.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Adhesively bonded joints are widely used in composite
structures to connect components due to their many advantages
compared with other joining methods. However, premature
failure due to debonding and peeling of the joint is the major
concern of this technique. To address this concern, numerous
theoretical and experimental studies have been conducted to
evaluate the strength of the adhesive joint. Goland and Reissner
[1] modeled (G–R model) the adhesive layer as continuously
distributed shear and vertical springs. In this model, no interac-
tions are assumed between the shear and vertical springs, and
therefore, the adhesive layer is modeled as a two-parameter,
elastic foundation. Simple explicit closed-form expressions
of interface stresses and beam forces can be obtained by this
model as demonstrated by many researchers [2,3]. The inter-
face stresses predicted by the two-parameter, elastic foundation
model reach good agreements with those obtained through
continuum analysis such as finite element analysis (FEA) [4]
except in a small zone at the vicinity of the edge of the adhesive
layer.

To predict more accurate stress distribution of the adhesive
joint, many refined models have been developed by modifying the
two-parameter, elastic foundation model of the adhesive layer
used in G–R model [5–17]. Martensen and Thomsen [18,19]
considered the nonlinearity of the adhesive layer. Carpenter [20]
used the solution based on finite element analysis as baseline to
evaluate different lap-shear joint theories. The major drawback
of the G–R model and its descendents mentioned above is that
they do not satisfy the zero shear stress at the free edges of
the adhesive layer [17]. As illustrated in [2,3], the governing
differential equation of the two-parameter model is of the sixth
order, which requires six boundary conditions; while there are
eight boundary conditions available, including six forces and two
shear stress boundary conditions. In the two-parameter, elastic
foundation model, the zero shear stress boundary conditions
are ignored. As a result, it predicts a maximum shear stress at the
free edge of the adhesive layer. To overcome this drawback,
some researchers modeled the adhesive layer as two-dimensional
continuum medium [21–24]. However, these methods require
complicated methods such as employing the variational principle
of complementary energy or introducing higher order beam
theory. This makes it difficult to use them in analysis and
design [4].

In this study, we present a novel, three-parameter, elastic
foundation model of adhesive joints. The model is a direct
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extension of the classical two-parameter, elastic foundation
model in that it avoids a fundamental flaw regarding the adhesive
layer. In the two-parameter, elastic foundation model, the force
equilibrium conditions of the adhesive layer are not satisfied,
because the peel stresses along the two adherend/adhesive
interfaces of the adhesive joint are assumed to be equal to each
other. In the new model, we remove this restriction on the peel
stresses and assume that they are different. In this way, there are
three different interface stresses existing in the adhesive layer.
They are the shear stress within the adhesive layer, the peel stress
along the top adherend–adhesive (TA) interface, and peel stress
along the bottom adhesive/adherend (AB) interface. It will be
shown later in this study that the different peel stress distribu-
tions along two interfaces are required by the equilibrium
condition of the adhesive layer. To represent these stresses
properly, the adhesive layer is modeled as two linear-normal
spring layers interconnected by a shear layer, instead of only one

linear-normal spring layer and one shear spring layer as used in
the two-parameter, elastic foundation model. By considering the
equilibrium condition of the adhesive layer, a governing differ-
ential equation of eighth order for a general configured adhesive
joint is obtained in term of the axial force of the adherend. Explicit
closed-form expressions of interface peel stresses along two
interfaces and the shear stress through the thickness of the
adhesive layer are obtained from this new model, and all eight
boundary conditions are satisfied. To verify the new model, FEA
results are used as reference standard because they are able to
predict the location of failure initiation in the adhesive joint.
Excellent agreements have been achieved by the new model and
FEA on predicting interfacial stresses of two typical adhesively
bonded joints. Compared with two-parameter, elastic foundation
model, the present model is more accurate in predicting
interfacial peel stress distribution near the edge of the adhesive
layer, which is critical to evaluating the potential of debonding
and predicting where the debonding can initiate. The formulation
of this study is in similar fashion to the two-parameter, elastic
foundation model [2,3], and the solutions are in explicit closed
forms. It can be followed and implemented conveniently by other
researchers.

2. Three-parameter, elastic foundation model of a general lap
joint

2.1. Adhesively bonded bi-layered beam system

Consider a typical adhesive joint in which two adherends are
connected through a thin layer of adhesive in the overlap
segment. These two adherends are modeled as Timoshenko’s
beams [25] with thickness h1 and h2, to account for the shear
deformation of the adherends. Here h1 and h2 are not necessarily
equal to account for both the symmetric and asymmetric adhesive
joints.

In this study, the analysis is focused on the overlap area of the
joint. Consider a typical infinitesimal, isolated body (Fig. 1) of
the overlap, which is a bi-layered beam system. The deformation
of the two adherends can be written as

Ui x; zið Þ ¼ uiðxÞ þ zifiðxÞ; Wiðx; ziÞ ¼ wiðxiÞ (1)

where ui(x), wi(x) and fi(x) (i ¼ 1, 2) are the axial, transverse
displacements, and rotation of the neutral axis of adherend i,
respectively; Ui(x,zi) and Wi(x,zi), (i ¼ 1, 2) are the axial and
transverse displacements of adherend i, respectively; subscript
i ¼ 1, 2, represent the adherend 1 (top adherend) and 2 (bottom
adherend) in Fig. 1, respectively; x and zi are the local coordinates
of adherend i with x-axis along the neutral axis of the beam i.

By making use of the constitutive equations of individual
layers, we can relate beam forces and displacements of adher-
ends:

C1
du1ðxÞ

dx
¼ N1ðxÞ; C2

du2ðxÞ

dx
¼ N2ðxÞ (2a)

dw1ðxÞ

dx
þ f1 xð Þ ¼

Q1ðxÞ

B1
;

dw2ðxÞ

dx
þ f2 xð Þ ¼

Q2ðxÞ

B2
(2b)

D1
df1ðxÞ

dx
¼ M1ðxÞ; D2

df2ðxÞ

dx
¼ M2ðxÞ (2c)

where N1(x) and N2(x), Q1(x) and Q2(x), and M1(x) and M2(x) are
the internal axial forces transverse shear forces, and bending
moments in adherend 1 and adherend 2, respectively; Ci, Bi and Di

(i ¼ 1, 2) are the axial, shear and bending stiffness, respectively,
and they are expressed as Ci ¼ Eibihi, Bi ¼ 5=6ðGibihiÞ; Di ¼

Eibih
3
i

.
12; where Ei and Gi (i ¼ 1, 2) are the longitudinal Young’s

modulus and shear modulus of beam i, respectively; bi is the
width of beam i.

Assuming that the shear stress is constant through the
thickness of the adhesive layer, we can establish the following
equilibrium equations by using free body diagram shown in Fig. 1:

dN1ðxÞ

dx
¼ b2tðxÞ;

dN2ðxÞ

dx
¼ �b2tðxÞ (3a)

dQ1ðxÞ

dx
¼ b2s1ðxÞ;

dQ2ðxÞ

dx
¼ �b2s2ðxÞ (3b)

dM1ðxÞ

dx
¼ Q1ðxÞ �

h1

2
b2tðxÞ;

dM2ðxÞ

dx
¼ Q2ðxÞ �

h2

2
b2tðxÞ (3c)

where s1(x), s2(x) are the peel stresses along the TA interface
and the AB interface, respectively; t(x) is the shear stresses in
the adhesive. Note that the overall equilibrium condition requires
(Fig. 1)

N1ðxÞ þ N2ðxÞ ¼ NT (4a)

Q1ðxÞ þ Q2ðxÞ þ QaðxÞ ¼ QT (4b)

M1ðxÞ þM2ðxÞ þ N1ðxÞ
h1 þ h2 þ h0

2
¼ MT (4c)

where NT, QT and MT are the corresponding resulting forces with
respect to the neutral axis of adherend 2; Qa(x) is the shear force
of the adhesive layer, which is given by t(x)b2h0; h0 is the
thickness of the adhesive layer.
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Fig. 1. Free body diagram of the adhesive joint.
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