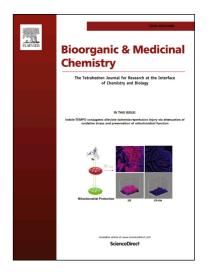
Accepted Manuscript

Synthesis and Biological Evaluation of Largazole Zinc-Binding Group Analogs

Bumki Kim, Ranjala Ratnayake, Hyunji Lee, Guqin Shi, Sabrina L. Zeller, Chenglong Li, Hendrik Luesch, Jiyong Hong


PII: S0968-0896(17)30463-7

DOI: http://dx.doi.org/10.1016/j.bmc.2017.03.071

Reference: BMC 13670

To appear in: Bioorganic & Medicinal Chemistry

Received Date: 8 March 2017 Revised Date: 23 March 2017 Accepted Date: 27 March 2017

Please cite this article as: Kim, B., Ratnayake, R., Lee, H., Shi, G., Zeller, S.L., Li, C., Luesch, H., Hong, J., Synthesis and Biological Evaluation of Largazole Zinc-Binding Group Analogs, *Bioorganic & Medicinal Chemistry* (2017), doi: http://dx.doi.org/10.1016/j.bmc.2017.03.071

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Title: Synthesis and Biological Evaluation of Largazole Zinc-Binding Group Analogs **Author:** Bumki Kim, ^{1,†} Ranjala Ratnayake, ^{2,3,†} Hyunji Lee, ¹ Guqin Shi, ⁴ Sabrina L. Zeller, ¹ Chenglong Li, ^{2,3} Hendrik Luesch, *, ^{2,3} Jiyong Hong *, ^{1,5}

ABSTRACT: Histone acetylation is an extensively investigated post-translational modification that plays an important role as an epigenetic regulator. It is controlled by histone acetyl transferases (HATs) and histone deacetylases (HDACs). The overexpression of HDACs and consequent hypoacetylation of histones have been observed in a variety of different diseases, leading to a recent focus of HDACs as attractive drug targets. The natural product largazole is one of the most potent natural HDAC inhibitors discovered so far and a number of largazole analogs have been prepared to define structural requirements for its HDAC inhibitory activity. However, previous structure-activity relationship studies have heavily investigated the macrocycle region of largazole, while there have been only limited efforts to probe the effect of various zinc-binding groups (ZBGs) on HDAC inhibition. Herein, we prepared a series of largazole analogs with various ZBGs and evaluated their HDAC inhibition and cytotoxicity. While none of the analogs tested were as potent or selective as largazole, the Zn2+-binding affinity of each ZBG correlated with HDAC inhibition and cytotoxicity. We expect that our findings will aid in building a deeper understanding of the role of ZBGs in HDAC inhibition as well as provide an important basis for the future development of new largazole analogs with nonthiol ZBGs as novel therapeutics for cancer.

¹ Department of Chemistry, Duke University, Durham, North Carolina 27708, United States

² Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States

³ Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States

⁴ Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States

⁵ Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States

[†] These authors contributed equally to this work.

Download English Version:

https://daneshyari.com/en/article/7775497

Download Persian Version:

https://daneshyari.com/article/7775497

<u>Daneshyari.com</u>