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a b s t r a c t

An evolutive mean value �z is defined for complex loadings. It is shown to be independent from the loading
shape and it tends toward the classical mean value zmean ¼ z ¼ 1

2 zmin þ zMaxð Þ for a periodic loading. The
proposed definition applies to quantities encountered in the fatigue modeling of different materials:
mean stress or mean hydrostatic stress for metals, mean damage driving force or mean equivalent strain
for quasi-brittle materials or for composites. It gives the possibility to introduce the adequate mean stress
effect in kinetic (rate) damage evolution laws. This point is illustrated for woven interlock composites in
two steps, (i) by proposing an original modeling of the asymptotic Haigh diagram and (ii) by the descrip-
tion of full mean stress effect from kinetic damage evolution laws. The concept of evolutive mean stress
gives the possibility to model fatigue under complex loading with no need to define a cycle. It applies to
random fatigue as shown in different examples.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fatigue damage is usually modeled by means of cyclic damage
laws [1,2], i.e. laws for damage increment per cycle dD=dN ¼
Gðra; . . .Þ expressed in terms of stress amplitude ra ¼ Dr=2 and
of either the mean stress r ¼ 1

2 rmin þ rMaxð Þ or the stress ratio
R ¼ rmin=rMax, quantities defined over a cycle. Such a fatigue
approach has only recently been applied to composites [3–6]. On
the contrary, kinetic (rate) damage evolution laws relate the dam-
age rate _D to current values of the stress (or strain) tensor, of the
accumulated plastic strain rate for low cycle fatigue of metals
[7–9]. The mean stress effect described by such kinetic damage
laws is gained from the time integration of the damage evolution
law over one periodic cycle, defining the damage increment per
cycle as the integral

dD
dN
¼
Z

1cycle

_D dt ð1Þ

Eq. (1) defines a cyclic damage law, possibly 3D, it is function of the
minimum and maximum mechanical quantities over the considered
cycle. It includes a mean stress effect but this effect cannot be

chosen nor easily changed in order to properly fit experimental
results. For instance [10] it is rather difficult to enforce the
Goodman–Söderberg linear dependency r‘ ¼ r1f ð1� brÞ of the
fatigue limit (in stress amplitude) with respect to the mean stress,
as encountered in fatigue of metallic materials [7,11]. It is even
more difficult to gain from time integration (1) the 3D Sines exten-
sion of a linear dependency with the mean value of the hydrostatic
stress rH ¼ 1

2 rH min þ rHMaxð Þ

r‘ ¼ r1f ð1� 3brHÞ rH ¼
1
3

trr ¼ 1
3
rkk ð2Þ

defining for a cyclic loading the fatigue limit in terms of octahedral
equivalent stress

AII ¼
1
2
ðrMax � rminÞeq ¼

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
ðr0Max � r0minÞ : ðr0Max � r0minÞ

r
ð3Þ

with ð:Þ0 ¼ ð:Þ � 1
3 trð:Þ 1 the deviatoric part.

Kinetic damage evolution laws have been initially introduced
for ductile failure [12,13,7]. They have later been used for the mod-
eling of fatigue of quasi-brittle materials [39,14,15], of elastomers
[17–19], of interfaces of laminated composites [35]. In these works
the only attempt to describe the mean stress effect [15] was a
quick and not fully satisfactory in comparison with the linear effect
described by Aas-Jackobsen formula [16] for lightweight concrete.
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The main difficulty in the modeling of mean stress effect by
means of kinetic (rate) damage evolution laws is the lack of def-
inition of an average value for the stresses or strains, a definition
valid in multiaxial but especially in case of non cyclic loading, a
definition that can be used to parametrize the expression of the
damage rate equation _D ¼ . . .. First attempts made to describe
the mean stress effect within such a kinetic Continuum Damage
Mechanics framework used the micro-defects closure effect, of
micro-cracks opening and closure due to change of stress sign
[10] or more recently used a first invariant dependent micro-
plasticity criterion [20–22]: the corresponding theories were not
general as they were related to metals plasticity. There were still
a lack of flexibility in the modeling. In present work one describes
first a way to improve such a two scale plasticity–damage model-
ing, for instance by allowing for the representation of bilinear
mean stress effect of TA6V titanium alloy. A more general approach
is proposed, based on the definition of a general evolutive mean
value �zðtÞ for any quantity z; z being a stress r, an hydrostatic
stress rH , a thermodynamics force Y, an equivalent strain �eq . . ..

2. Mean stress effect from first invariant criterion function at
defects scale

A multiaxial two scale damage model has been proposed by
[23] for High Cycle Fatigue of metals. It is based on Lemaitre kinetic
damage evolution law, of damage governed by (micro-) plasticity,

_D ¼ Yl

S
_pl ð4Þ

The damage strength S is a material parameter, pl is the accumu-
lated plastic strain at microscale l (the defects scale), Yl is the
strain energy release rate density (the thermodynamics force
associated with damage), here also at microscale. It is function of
the stress triaxiality rl

H=r
l
eq as

Yl ¼
~rl 2

eq Rm

2E
Rm ¼

2
3
ð1þ mÞ þ 3ð1� 2mÞ rl

H

rl
eq

* +2

þ

ð5Þ

with ~rl ¼ rl=ð1� DÞ the effective stress of Continuum Damage

Mechanics and ð:Þeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 ð:Þ

0 : ð:Þ0
q

von Mises norm. Quantities at

microscale have a l supperscript, they are related to the stress r
at the Representative Volume Element scale by means of Eshelby–
Kröner scale transition law [24,25]

~rl ¼ r� 2Gð1� bEÞ�pl bE ¼
2

15
5� 4m
1� m

ð6Þ

The stress history in High Cycle Fatigue is obtained from an elastic
computation (r ¼ E : �, with E Hooke’s elasticity tensor), when the
microscale quantities, effective stress ~rl, stress rl, strain �l, plastic
strain �pl, kinematic hardening Xl and damage D result from the
time integration, time step by time step, of elasto-plasticity coupled
with damage constitutive equations (here at microscale): elasticity
~rl ¼ E : ð�l � �plÞ, plasticity evolution _�pl ¼ _pl 3

2
~rl0�Xl

ð~rl�XlÞeq
, linear

kinematic hardening _Xl ¼ 2
3 Cð1� DÞ _�pl and of course damage

evolution (Eq. 4). The initial criterion function considered in this
two scale damage model was von Mises criterion, without [23] or
with [10] kinematic hardening,

f l ¼ f l
0 ¼ ðr� XÞeq � r1f ð7Þ

The key point of such a modeling is the fact that the yield stress at
microscale rl

y ¼ r1f < ry is taken equal to the asymptotic fatigue

limit (at infinite lifetime). As von Mises criterion f l
0 is not pressure

(hydrostatic stress) dependent, the asymptotic fatigue limit in

stress amplitude r‘ is found independent from the mean stress
for such a first modeling. Haigh diagram at infinite lifetime is the
constant value for the stress amplitude

ra ¼ r‘ ¼ r1f ð8Þ

The interesting point here is that damage in fatigue is consid-
ered as part of the material behavior: it is mathematically handled
by time integration of differential constitutive equations (includ-
ing a kinetic damage evolution law). There is no need of count-
ing cycles methods to deal with complex loading. This feature
naturally allows for non-anisothermal applications [26].

2.1. Linear mean stress effect

A linear mean stress effect on the fatigue asymptote can be
introduced in the two scale damage model by considering
Drucker–Prager criterion function at microscale [20,21], with a is
a material parameter,

f l ¼ ~rl � Xlð Þeq þ atr~rl � r1f ¼ ~rl � Xlð Þeq þ 3arH � r1f ð9Þ

i.e. by making the fatigue criterion pressure/first invariant depen-
dent, as proposed by many authors [27–30,11,31] for fatigue.
From Eshelby–Kröner scale transition law (6) and incompressible
plasticity still one has tr ~rl ¼ tr r ¼ 3rH . The differences here with
classical works are: (i) the infinite lifetime domain f l

< 0 is trans-
lated by micro-plasticity and (ii) the current values of the stresses
are used (not the maximum nor mean values) and the modeling
remains incremental. Micro-plasticity and damage are solution of
kinetic differential equation so that there is no need of the
definition of a cycle to calculate the time to crack initiation (it is
the time at which DðtÞ ¼ Dc , the critical damage). In A one shows
from the two scale damage model constitutive equations that the
asymptotic fatigue limit is linearly mean stress dependent as at
infinite lifetime,

in 1D : ra ¼ r‘ ¼ r1f � ar in 3D; proportional loading

: AII ¼ r‘ ¼ r1f � atr r ð10Þ

so that Sines criterion is retrieved in 3D, under proportional loading
assumption with octahedral stress AII equal to von Mises norm
of stress tensor amplitude. The fatigue limit in shear is obtained

as s1f ¼ r1f
ffiffiffi
3
p.

for any mean shear stress s: it is not mean stress

dependent, as observed experimentally [28,7].

2.2. Bi-linear mean stress effect

The mean stress effect is often nonlinear. This is for instance the
case for aeronautics TA6Vpq titanium alloy (Fig. 1) for which the
mean stress effect is quite strong at small mean stress but weaker
at high mean stress (with a lower slope in Haigh diagram stress
amplitude ra vs mean stress r) as it has been shown by Gomez
and Bonnand et al. [32,33]. A nonlinear or at least bilinear model-
ing is needed if the applications range from alternated fatigue to
high mean stress loading.

A bilinear mean stress effect on the fatigue asymptote can be
introduced in the two scale damage model by considering a bilin-
ear definition of the first invariant term of criterion function at
microscale, as

f l ¼ ~rl � Xlð Þeq þ KlðrHÞ �
ffiffiffi
3
p

s1f

KlðrHÞ ¼
3a1rH if rH 6

1
3 r0

3a2rH þ ða1 � a2Þr0 if rH >
1
3 r0

(
ð11Þ

with a1; a2 and the mean stress domain transition stress r0 as
material parameters and KlðrH ¼ 0Þ ¼ 0 so that s1f is the fatigue
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