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a b s t r a c t

This work studies further an approach originally proposed to evaluate equivalent stress and strain ranges
in non-proportional (NP) load histories, called the Moment Of Inertia (MOI) method. The MOI method
assumes that the path contour in the deviatoric stress or strain diagram is a homogeneous wire with unit
mass. The center of mass of such wire gives then the mean component of the path, while the moments of
inertia of the wire can be used to obtain the equivalent stress or strain ranges. The MOI method is an
alternative to convex enclosure methods, such as Dang Van’s Minimum Ball or the Maximum Prismatic
Hull methods, without the need for computationally-intensive search algorithms or adjustable
parameters. The MOI method is extended here to calculate as well the non-proportionality factor Fnp of
generic multiaxial load histories, formulated in an alternative sub-space of the deviatoric plastic strains.
Experimental results for 14 different multiaxial histories prove the effectiveness of the MOI method to
predict the observed non-proportionality factors. Hence, it can be a most useful tool for the computation
of multiaxial fatigue damage in practical applications.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Several multiaxial fatigue damage models have been introduced
in the literature, such as the ones proposed by Sines, Crossland,
Findley, McDiarmid, Brown–Miller, Fatemi–Socie and Smith–
Watson–Topper (SWT) [1]. All of them require some measure of
an equivalent stress or strain range, which may be difficult to
obtain for non-proportional (NP) multiaxial load histories.

For a given multiaxial stress–strain NP history, the fatigue dam-
age can be calculated by projecting the history onto a candidate
plane at the critical point [1]. This critical plane approach is simple
to compute for Case A cracks, which initiate perpendicular to the
free surface. In this case, the in-plane shear stress or strain may
be counted using a uniaxial rainflow algorithm [2]. On the other
hand, for Case B cracks, which initiate at a 45� angle from the free
surface, a multiaxial rainflow count must be performed to identify
individual cycles formed by the in-plane and out-of-plane shear
components [3].

For each rainflow-counted cycle, the equivalent stress or strain
range is often computed using the so-called convex enclosure
methods [4], which try to find circles, ellipses or rectangles that
contain the entire projected path in the 2D case, or hyperspheres,
hyperellipsoids or hyperprisms in a generic 5-dimensional (5D)

equivalent stress space. The traditional convex enclosure methods
have been reviewed in [4]: the Minimum Ball, Minimum Circum-
scribed Ellipsoid, Minimum Volume Ellipsoid, Minimum F-norm
Ellipsoid (MFE), Maximum Prismatic Hull and Maximum Volume
Prismatic Hull. These methods make use of stress and strain
parameters such as the von Mises stress and strain ranges DrMises

and DeMises, defined by:
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where the �m is the mean (or effective) Poisson coefficient
�m ¼ ð0:5ep þ meeeÞ=ðep þ eeÞ, while ee and ep are the elastic and plastic
components of the strains, and me and mp are the elastic and plastic
Poisson coefficients (mp = 0.5 assuming plastic strains conserve
material volume).

Extensive simulations from [4] showed that all convex enclo-
sure methods can lead to poor predictions of the mean stresses
or strains, if they are assumed as located at the center of the ball,
ellipse or prism, as seen in Fig. 1(a), which shows a stress path
shaped very differently from an ellipse and its Minimum F-norm
Ellipsoid (MFE) enclosure. Convex enclosure methods may also
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result in poor estimates of stress or strain amplitudes, in special for
highly non-convex NP history paths, such as cross or star-shaped
paths.

If only the stress or strain history is measured, then an incre-
mental plasticity algorithm must be implemented to obtain the
stress–strain behavior caused by a NP loading. To account for NP
hardening effects, it is necessary to correctly evaluate the non-pro-
portionality factor Fnp associated with the load history and the
additional hardening coefficient anp. The factor Fnp depends solely
on the shape of the history path [5], while anp depends not only
on the material and its microstructure, but also on the strain
amplitudes involved in the history. The additional hardening coef-
ficient can be estimated from

anp ¼
rOP

rIP
� 1 ð3Þ

where rIP and rOP are the equivalent von Mises stress amplitudes ob-
tained under the same strain level for, respectively, in-phase (Fnp = 0)
and 90� out-of-phase (Fnp = 1) loadings. This rOP/rIP ratio is usually
calculated at high plastic strains, however it can be defined at any
strain level, resulting in some strain amplitude dependence of anp.

If anp is eliminated from the Fnp equation, then Fnp can be ob-
tained for a given von Mises stress amplitude r from

Fnp ¼
r=rIPð Þ � 1

rOP=rIPð Þ � 1
ð4Þ

as long as r is measured in the same material and under a similar
strain level as the one from the rIP and rOP measurements. Using
the above equation, Fnp can be calculated from experiments without
the need to explicitly obtain anp or to worry about its strain ampli-
tude dependence. In the absence of experimental data to measure r,
rIP and rOP, the NP factor Fnp must be estimated from the load his-
tory path. The main Fnp estimates are presented next.

2. Estimates of the non-proportionality factor Fnp

Originally, Fnp was estimated from the aspect ratio of the convex
enclosure that contains the history path (e.g. the aspect ratio b/a of
an enclosing ellipse with semi-axes a and b). But such convex
enclosure estimates can lead to poor predictions of Fnp, as seen in
Fig. 1(b). This example shows a path that does not encircle the ori-
gin of the von Mises r � s

p
3 diagram, while entirely located far

away from it. Despite the almost circular shape of the enclosing
Minimum F-norm Ellipsoid (MFE), which would suggest Fnp ffi 1,
the principal direction in fact varies very little along such path,
since the angle between each point in the path and the origin of
the 2D diagram varies very little during each cycle – thus, the ac-
tual Fnp should be very small in this example.

Another notable example where convex enclosures fail to calcu-
late Fnp is shown in Fig. 1(c), where a loading path describes a
straight line that does not cross the origin of the diagram. This par-
ticular path induces a 45� variation of the principal direction, imply-
ing in Fnp 0, however any convex enclosure method would predict
Fnp = 0 for such straight line. This path is an interesting example of
how an in-phase loading (which is represented by a straight path)
can be non-proportional (making the principal direction vary). Note
also that convex enclosure methods can lead to poor Fnp predictions
even in paths that encircle the origin, in special when the path shape
is very different from an ellipse or rectangle, or when the mean
value of the path is not located close to the origin.

The use of the stress path to estimate Fnp is also questionable.
Fig. 1(d) shows a stress path that combines a purely elastic ten-
sion–torsion portion (well inside the yield surface with radius SY)
with uniaxial tension–compression plastic straining. Since NP hard-
ening is caused by plastic straining, the purely elastic portion should
not influence the value of Fnp. As plastic strains only occur along
such path under uniaxial conditions, it is expected that Fnp = 0,
which is confirmed by experiments and incremental plasticity sim-
ulations using Tanaka’s NP model [6]. However, a convex enclosure
method applied to such stress path would wrongfully predict Fnp

much greater than zero, as suggested by the MFE ellipse in
Fig. 1(d). Therefore, any accurate Fnp estimation method should be
based on the plastic strain path, not on the stress or total strain path.

Several methods have been proposed to estimate Fnp, besides
the ones based on convex enclosures. Kanazawa et al. [7] estimated
Fnp as a rotation factor, defined by the ratio between the shear
strain range at 45� from the maximum shear plane and the maxi-
mum shear strain range. This factor correctly tends to the limits
Fnp = 0 for proportional loadings and Fnp = 1 for 90� out-of-phase
strain histories (assuming the relation ca ¼ ð1þ �mÞ � ea between
strain amplitudes for Case A cracks [1]). But it fails to correctly
compute Fnp for more complex histories.

Itoh et al. [8] estimated Fnp using an integral definition along the
strain path:

Fnp ¼
p

2TeImax

Z T

0
eIðtÞ � j sin nðtÞj � dt ð5Þ

where eI(t) is the absolute value of the maximum principal strain at
each instant t, eImax is the maximum value of eI(t) along the entire
path, n(t) is the angle between the principal directions associated
with eI(t) and eImax, and T is the time period of the path.

Itoh’s method works for simple 2D (e.g. tension–torsion) histo-
ries, but it should not be applied to more general 3D to 6D histo-
ries, since it is based on a scalar measure, the angle n(t). For
instance, if the directions of eI(t) along a load path describe a cone
with symmetry axis in the direction of eImax, then n(t) would be
constant and equal to half the cone apex angle, regardless of the
chosen path. Constant amplitude or 90� out-of-phase cycles could
result in the same n(t) and eI(t) histories, wrongfully calculating the
same Fnp for both cases. Instead of using the scalar measure n(t),
the direction of eI(t) would need to be defined by a vector of at least
two elements to be able to distinguish between these example
paths.

To calculate Fnp of a more general 6D load path, Bishop [9]
introduced a 6 � 6 inertia tensor termed the Rectangular
Moment Of Inertia (RMOI) of the stress path, which can be
expressed using Voigt-Mandel’s stress representation
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where the mean component �rm and accumulated stress pr are also
integrated along the stress path, calculated from
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(b)
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(d)

Fig. 1. History path examples showing the inadequacy of convex enclosure
methods, such as the Minimum F-norm Ellipsoid (MFE), to predict mean compo-
nents or the non-proportionality factor Fnp.
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