ARTICLE IN PRESS

Bioorganic & Medicinal Chemistry Letters xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

New lead elements for histamine H_3 receptor ligands in the pyrrolo[2,3-*d*] pyrimidine class

Christian Espinosa-Bustos^{a,*}, Annika Frank^b, Sandra Arancibia-Opazo^c, Cristian O. Salas^c, Angelica Fierro^c, Holger Stark^b

^a Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago 6094411, Chile

^b Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany

^c Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile

ARTICLE INFO

Keywords: Histamine H₃ receptor Pyrrolo[2,3-d]pyrimidine derivatives Microwave assisted synthesis G-protein coupled receptors

ABSTRACT

This work describes the microwave assisted synthesis of twelve novel histamine H_3 receptor ligands. They display pyrrolo[2,3-*d*]pyrimidine derivatives with rigidized aliphatic amines as warheads. The compounds were screened for H_3R and H_4R binding affinities in radioligand displacement assays and the most potent compounds were evaluated for H_3R binding properties *in vitro* and in docking studies. The combination of a rigidized H_3R warhead and the pyrrolo[2,3-*d*]pyrimidine scaffold resulted in selective activity at the H_3 receptor with a pK_i value of 6.90 for the most potent compound. A bipiperidine warhead displayed higher affinity than a piperazine or morpholine motif, while a naphthyl moiety in the arbitrary region increased affinity compared to a phenyl derivative. The compounds can be starting points for novel, simply synthesized histamine H_3 receptor ligands.

The physiological effects of histamine are facilitated by four G protein coupled receptors (GPCRs). ¹ H₁, H₂, H₃, and H₄ receptors belong to the same family but differ in their structure, signalling mechanisms, function, tissue distribution and ligand binding. Histamine H₃ receptors (H₃Rs) are spread mainly in sympathetic and parasympathetic neurons of the CNS, regulating the release of various neurotransmitters such as histamine, dopamine, serotonin, acetylcholine and noradrenaline.¹ As ligands at the receptor are known for modulating memory functions and arousal, the human H₃R gained interest of the pharmaceutical industry due to its involvement in pathologies such as schizophrenia, Alzheimer's disease and sleep disorders.²

A general pharmacophore for ligands at the H_3R contains a basic moiety connected by a linker (mostly an alkyl) to a central core, which can be further substituted by an arbitrary region.³ The basic moiety and the linker display the functional framework, essential for receptor binding, while the arbitrary region is mainly responsible for potency and pharmacokinetic properties.⁴ The first generation H_3R ligands usually contained imidazole-based scaffolds, with regard to histamines structure.⁴ Although they displayed high potency, the nucleus resulted in lack of selectivity and pharmacokinetic issues (e.g. interaction with cytochrome P450 enzymes).⁵ Hence, several non-imidazolic ligands have been synthesized and successful replacement was accomplished with piperidine moieties. This led to pitolisant (Fig. 1),⁶ which was approved by the EMA for the treatment of narcolepsy in 2016. With JNJ 7737782 (Fig. 1), the alkylspacer was rigidized and a morpholine structure was added in the arbitrary region. The structure displayed beneficial pharmacokinetic properties (e.g. short half-life), affinity remained high and the compound increased wakefulness in rats.⁷ Compound I (Fig. 1) was developed as centrally acting antagonist with a bipiperidine structure. It displayed high activity *in vitro* as well as *in vivo* with optimized pharmacokinetic properties.⁸

On the other hand, pyrrolo[2,3-*d*]pyrimidine scaffolds are present in many anti-inflammatory,⁹ antitumor¹⁰ and anti-infective compounds.^{11,12} Though the combination of the H₃R pharmacophore and 2,4,7-trisubstituted pyrrolo[2,3-*d*]pyrimidine as central core could be promising for developing H₃R ligands with additional pharmacological properties. As the pyrrolo[2,3-*d*]pyrimidine scaffold exhibits low micromolar affinity at the H₄ receptor,¹³ all compounds were screened for their H₄ receptor binding properties as well.

Thus, we synthesized rigidized modifications of piperidine moieties in this work, as those are reported to deliver high affinities at the H_3R and provide beneficial pharmacokinetic properties.

In this work, we show the microwave-assisted synthesis of twelve new pyrrolo[2,3-d]pyrimidine derivatives with several rigidized aliphatic amines as warheads and different hydrophobic arbitrary

* Corresponding author.

E-mail address: ccespino@uc.cl (C. Espinosa-Bustos).

https://doi.org/10.1016/j.bmcl.2018.07.023

Received 17 April 2018; Received in revised form 11 July 2018; Accepted 12 July 2018 0960-894X/ © 2018 Elsevier Ltd. All rights reserved.

ARTICLE IN PRESS

Fig. 1. Chemical structures of H₃ receptor ligands, pharmacophore and proposed structures in this work.

Scheme 1. Reagents and conditions a) Alkyl halides, K₂CO₃, DMF, r.t. 6 h, 50–89% b) Amines, NEt₃, EtOH, 80 °C, MW, 15 min, 62–99%.

Table 1

 pK_i values of compounds **3b**, **3c**, **3f** and **3j** at the hH_3R determined in radioligand displacement assays. Binding energy determined by molecular modelling approaches.

Compounds	$hH_3R pK_i \overline{x} \pm SEM$	Energy (kcal/mol)
I 3b 3c 3f	$\begin{array}{l} 7.89^{a} \\ 6.31 \ \pm \ 0.19 \\ 5.97 \ \pm \ 0.15 \\ 6.83 \ \pm \ 0.23 \end{array}$	-6.68 -6.22 -6.18 -8.63
3j	6.90 ± 0.27	-8.1

Data show mean \pm standard error of mean (SEM) of five to six independent experiments in duplicates.

^a Published in8.

Download English Version:

https://daneshyari.com/en/article/7777910

Download Persian Version:

https://daneshyari.com/article/7777910

Daneshyari.com