
Accepted Manuscript

Synthesis of carbon-11-labeled 5-HT₆R antagonists as new candidate PET radioligands for imaging of Alzheimer's disease

Xiaohong Wang, Fugui Dong, Caihong Miao, Wei Li, Min Wang, Mingzhang Gao, Qi-Huang Zheng, Zhidong Xu

PII:	S0960-894X(18)30312-3
DOI:	https://doi.org/10.1016/j.bmcl.2018.04.014
Reference:	BMCL 25761
To appear in:	Bioorganic & Medicinal Chemistry Letters
Received Date:	6 March 2018
Revised Date:	4 April 2018
Accepted Date:	6 April 2018

Please cite this article as: Wang, X., Dong, F., Miao, C., Li, W., Wang, M., Gao, M., Zheng, Q-H., Xu, Z., Synthesis of carbon-11-labeled 5-HT₆R antagonists as new candidate PET radioligands for imaging of Alzheimer's disease, *Bioorganic & Medicinal Chemistry Letters* (2018), doi: https://doi.org/10.1016/j.bmcl.2018.04.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Synthesis of carbon-11-labeled 5-HT₆R antagonists as new candidate PET radioligands for imaging of Alzheimer's disease

Xiaohong Wang^a, Fugui Dong^a, Caihong Miao^a, Wei Li^a, Min Wang^b, Mingzhang Gao^b, Qi-Huang Zheng^{b,*}, Zhidong Xu^{a,c,*}

^aKey Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China

^bDepartment of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, Room 202, Indianapolis, IN 46202, USA

^cShijiazhuang Vince Pharmatech Co., Ltd., Shijiazhuang, Hebei 050030, China

*Corresponding authors. E-mail address: <u>qzheng@iupui.edu</u> (Q.-H. Zheng); <u>zhidongxu@hbu.edu.cn</u> (Z. Xu).

This is where the receipt/accepted dates will go; Received Month XX, 2018; Accepted Month XX, 2018 [BMCL RECEIPT]

Abstract—Carbon-11-labeled serotonin (5-hydroxytryptamine) 6 receptor (5-HT₆R) antagonists, 1-[(2-bromophenyl)sulfonyl]-5-¹¹C]methoxy-3-[(4-methyl-1-piperazinyl)methyl]-1*H*-indole $(O - [^{11}C]2a)$ and 1-[(2-bromophenyl)sulfonyl]-5-methoxy-3-[(4- $[^{11}C]$ methyl-1-piperazinyl)methyl]-1*H*-indole (*N*- $[^{11}C]$ 2a), 5- $[^{11}C]$ methoxy-3-((4-methylpiperazin-1-yl)methyl)-1-(phenylsulfonyl)-1*H*-indole (*N*- $[^{11}C]$ 2a), 5- $[^{11}C]$ methoxy-3-((4-methylpiperazin-1-yl)methyl)-1-(phenylsulfonyl)-1-(phenylsulfonyl)-1-(phenylsulfonyl)-1-(phenylsulfo indole $(O-[^{11}C]\mathbf{2b})$ and 5-methoxy-3-((4- $[^{11}C]$ methylpiperazin-1-yl)methyl)-1-(phenylsulfonyl)-1*H*-indole $(N-[^{11}C]2b),$ 1-((4isopropylphenyl)sulfonyl)-5-[¹¹C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1H-indole $(O - [^{11}C]2c)$ 1-((4and isopropylphenyl)sulfonyl)-5-methoxy-3-((4- $1^{11}C$]methylpiperazin-1-yl)methyl)-1*H*-indole (*N*- $1^{11}C$]**2c**), 1-((4-fluorophenyl)sulfonyl)-5-^{[11}C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1*H*-indole $(O-[^{11}C]2d)$ and 1-((4-fluorophenyl)sulfonyl)-5-methoxy-3-((4-[¹¹C]methylpiperazin-1-yl)methyl)-1*H*-indole (*N*-[¹¹C]**2d**), were prepared from their *O*- or *N*-desmethylated precursors with [¹¹C]CH₃OTf through O- or N-[¹¹C]methylation and isolated by HPLC combined with SPE in 40-50% radiochemical yield, based on [¹¹C]CO₂ and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (MA) at EOB was 370-740 GBq/µmol with a total synthesis time of ~40-minutes from EOB.

Keywords: Serotonin (5-hydroxytryptamine) 6 receptor (5- HT_6R); Carbon-11-labeled 5- HT_6R antagonists; Radiosynthesis; Positron emission tomography (PET); Alzheimer's disease (AD).

Alzheimer's disease (AD) is the most common form of dementia and affects close to 50 million people worldwide in 2017.¹ The disease is divided into four stages, including predementia, early dementia, moderate AD and advanced AD.² The cause for most AD cases is still unknown, and there are several competing hypotheses like genetic, cholinergic hypothesis, amyloid hypothesis, and tau hypothesis, trying to explain it.³ AD might be treated by symptomatic treatments and disease-modifying therapies such as neuroprotective and neurorestorative therapies, however, none effective strategy is approved for preventing, curing and slowing

the progress of AD.⁴ The current available medications can only be used to treat the cognitive problems of AD, focused on acetylcholinesterase inhibitors (AChEIs) including tacrine, rivastigmine, galantamine, and donepezil, as well as a *N*-methyl-_D-aspartate (NMDA) receptor antagonist memantine.⁵ The benefit from these approved cognitive enhancing drugs for AD is small, and novel alternate therapy for treating cognitive disorders is eagerly needed.⁶ Since the clinical trial of the disease-modifying therapies in AD is an extremely complex process with very high failure rate, the researchers have turned their focus to symptomatic

Download English Version:

https://daneshyari.com/en/article/7778779

Download Persian Version:

https://daneshyari.com/article/7778779

Daneshyari.com