

Accepted Manuscript

Discovery of $\{4-[4,9-bis(ethyloxy)-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl]-2-fluorophenyl\}acetic acid (GSK726701A), a novel EP₄ receptor partial agonist for the treatment of pain$

Mark P. Healy, Amanda C. Allan, Kristin Bailey, Andy Billinton, Iain P. Chessell, Nicholas M. Clayton, Gerard M. P. Giblin, Melanie A. Kay, Tarik Khaznadar, Anton D. Michel, Alan Naylor, Helen Price, David J. Spalding, David A. Stevens, Martin E. Swarbrick, Alexander W. Wilson

Please cite this article as: Healy, M.P., Allan, A.C., Bailey, K., Billinton, A., Chessell, I.P., Clayton, N.M., M. P. Giblin, G., Kay, M.A., Khaznadar, T., Michel, A.D., Naylor, A., Price, H., Spalding, D.J., Stevens, D.A., Swarbrick, M.E., Wilson, A.W., Discovery of $\{4-[4,9-bis(ethyloxy)-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl]-2-fluorophenyl\}acetic acid (GSK726701A), a novel EP₄ receptor partial agonist for the treatment of pain,$ *Bioorganic & Medicinal Chemistry Letters*(2018), doi: https://doi.org/10.1016/j.bmcl.2018.03.091

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Discovery of {4-[4,9-bis(ethyloxy)-1-oxo-1,3-dihydro-2Hbenzo[f]isoindol-2-yl]-2-fluorophenyl}acetic acid (GSK726701A), a novel EP₄ receptor partial agonist for the treatment of pain

Mark P. Healy,^{*} Amanda C. Allan, Kristin Bailey, Andy Billinton, Iain P. Chessell, Nicholas M. Clayton, Gerard M. P. Giblin, Melanie A. Kay, Tarik Khaznadar, Anton D. Michel, Alan Naylor, Helen Price, David J. Spalding, David A. Stevens, Martin E. Swarbrick, Alexander W. Wilson

GlaxoSmithKline, Neurosciences Centre of Excellence for Drug Discovery; New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK

Declarations of interest: none

This is where the receipt/accepted dates will go; Received Month XX, 2018; Accepted Month XX, 2018 [BMCL RECEIPT]

Abstract— A novel series of EP_4 agonists and antagonists have been identified, and then used to validate their potential in the treatment of inflammatory pain. This paper describes these novel ligands and their activity within a number of pre-clinical models of pain, ultimately leading to the identification of the EP_4 partial agonist GSK726701A.

Prostaglandin E2 (PGE₂) **1**, synthesised from arachidonic acid (AA) by the cyclooxygenase enzymes, is a ubiquitous mediator of mammalian physiology and pathophysiology.¹ Physiologically, PGE₂ contributes to the modulation of bone formation², gut homeostasis including pH control³, renal function and blood pressure.⁴ In addition PGE₂ is associated with the growth of certain cancers⁵ and is a well characterised inflammatory mediator contributing to pain and inflammation.⁶ To date, pharmacological intervention in the AA pathway has led to the discovery and commercialisation of NSAIDS and COX2 inhibitors.⁷ However these drugs have a number of safety concerns associated with gastro-intestinal bleeding and damage and adverse cardiovascular events, respectively.⁸

The biological effects of PGE_2 are mediated by four Gprotein coupled receptors designated $EP_{1.4}$.⁹ Each of these receptors has characteristic distribution in various tissues and this feature, together with the paracrine nature of PGE_2 , allows PGE_2 to play varied and sometimes opposing roles in the mammalian system. For example, PGE_2 is thought to act as a pro-inflammatory agent in the early stages of inflammation, while helping to promote inflammatory resolution at later time points¹⁰ and these effects may be mediated by different receptor sub-types. Thus selectively targeting individual EP receptors offers the opportunity to intervene in pathophysiology with specificity and to potentially avoid toxicity.

As part of a wider investigation of the role of EP receptors in pain and inflammation, we initiated a programme to discover selective EP₄ ligands. We were particularly intrigued by seemingly conflicting roles of EP₄ in pain and inflammation. Studies have confirmed that PGE₂ acting on the EP₄ receptor can either stimulate or inhibit inflammation in concert with IFN γ .¹¹ Furthermore, EP₄ receptor knockout mice showed resistance to inflammation in a collagen induced arthritis model¹² and selective EP₄ antagonists show robust anti-inflammatory effects in vivo.¹³ However, EP₄ agonists have also been reported to attenuate levels of the pro-inflammatory mediator TNF α in rats¹⁴ and can potently suppress inflammation in an adjuvant induced arthritis model.¹⁵

The PGE_2 analogue ONO-4819CD (rivenprost) **2** has been in clinical development and was reported to have an

* Corresponding author present address: Novartis Institutes for BioMedical Research, 22 Windsor St, Cambridge, MA, 02139, USA. e-mail: <u>mark.healy@novartis.com</u> (M.P.Healy).

Download English Version:

https://daneshyari.com/en/article/7778834

Download Persian Version:

https://daneshyari.com/article/7778834

Daneshyari.com