Bioorganic & Medicinal Chemistry Letters 28 (2018) 947-951

Contents lists available at ScienceDirect

ELSEVIER

journal homepage: www.elsevier.com/locate/bmcl

Bioorganic & Medicinal Chemistry Letters

Violacin A, a new chromanone produced by *Streptomyces violaceoruber* and its anti-inflammatory activity

Jian Ma^a, Bixuan Cao^a, Xiu Chen^b, Minjuan Xu^c, Xiaoxu Bi^a, Peipei Guan^a, Yi Jiang^{b,*}, Jun Xu^c, Li Han^{a,*}, Xueshi Huang^a

^a Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China

^b Yunnan Institute of Microbiology, School of Life Science, Yunnan University, Kunming 650091, PR China

^c Institute of Oceanology, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China

ARTICLE INFO

Article history: Received 23 November 2017 Revised 10 January 2018 Accepted 23 January 2018 Available online 31 January 2018

Keywords: Anti-inflammation NF-κB Streptomyces violaceoruber Violacin A

ABSTRACT

A new chromanone derivative, named violacin A (1), was isolated from the fermentation broth of *Streptomyces violaceoruber* as a potential anti-inflammatory compound. The structure of violacin A was established using comprehensive NMR spectroscopic data analysis together with UV, IR, and MS data. The anti-inflammatory effects and action mechanisms of violacin A were investigated *in vitro*. The results demonstrated that violacin A attenuated the production of NO, IL-1 β , IL-6, and TNF- α as well as inhibited the expression of iNOS in LPS-induced RAW 264.7 cells. Additionally, Western blot and qRT-PCR results revealed that 1 down-regulated pro-inflammatory cytokines expression correlated with the suppression of NF- κ B signaling pathway.

© 2018 Elsevier Ltd. All rights reserved.

Increasing awareness of inflammation is not confined to that it is a localized protective reaction to injury or infection, but also a spotlight in pathogenesis of many inflammatory disorders.¹ Abundant evidence has demonstrated that inflammation plays a critical role in the development of multiple diseases, including atherosclerosis and coronary artery disease, diabetes, Alzheimer's disease and the like.^{2–5} Natural products serve as the basis for providing lead compounds in the search for therapeutic approach of inflammation-associated disorders.⁶ Many natural compound, such as triptolide, resveratrol, silymarin have been used as anti-inflammatory agent in clinic.^{7,8}

In the process of our continuous search for bioactive secondary metabolites from streptomyces associated with animal feces, *Streptomyces violaceoruber* (YIM 101131), which was isolated from fecal samples excreted by healthy adult *Equus burchelli* (zebra) living in Yunnan Wild Animal Park, was chosen to investigate the chemical constituents. Three new compounds including a tetralone derivative, a tryptophan derivative, and a fatty acid amide as well as a known compound GTRI-02 were obtained from the fermentation broth of *S. violaceoruber* in our previous work and the new tetralone derivative showed inhibition of NO production in LPS-stimulated RAW 264.7 macrophage cells with an IC₅₀ value of 51.2 μ M.⁹ The further separation of the scale-up fermentation

broth (70 L) of *S. violaceoruber* by a sequential column chromatographies over Sephadex LH-20, silica gel, and ODS led to yield another new chromanone, violacin A (1) (Fig. 1A).^{10,11} Herein, we reported the isolation, structure elucidation, anti-inflammatory effects and mechanisms in LPS-stimulated RAW264.7 macrophage cells of violacin A (1).

Compound 1 was obtained as a colorless, amorphous solid and its molecular formula was elucidated as C13H14O5 by HRESIMS at m/z 273.0743 [M+Na]⁺. Its IR spectrum showed the presence of hydroxyl group (3182 cm $^{-1}$), carbonyl groups (1708, 1669 cm $^{-1}$), and benzene ring (1608, 1582, 1461 cm⁻¹). The ¹H NMR spectrum (Table 1) of compound 1 revealed the presence of two meta-coupled aromatic protons at $\delta_{\rm H}$ 6.25 and 6.14, two AB system methylenes at $\delta_{\rm H}$ 3.02 (d, J = 14.9 Hz), 2.98 (d, J = 14.9 Hz) and $\delta_{\rm H}$ 3.04 (dd, J = 15.9, 2.0 Hz), 2.60 (d, J = 15.9 Hz), two singlet methyls at $\delta_{\rm H}$ 2.45 and 2.19. In addition, signals of two active protons were observed at $\delta_{\rm H}$ 10.35 and 7.08. The ¹³C NMR data (Table 1) of compound 1, together with its HSQC spectrum, suggested thirteen carbon signals comprising two carbonyl carbons at $\delta_{\rm C}$ 205.6 and 191.0, six aromatic carbons at δ_{C} 163.1, 161.3, 142.9, 113.0, 112.3, and 102.0, one ketal carbon at $\delta_{\rm C}$ 100.3, two methylenes at $\delta_{\rm C}$ 52.8 and 47.9, and two methyls at $\delta_{\rm C}$ 32.3 and 23.0. Comparison of the ¹H and ¹³C NMR data of **1** to those of a known compound, 2,7-dihydroxy-5-methyl-2-(2-oxobutyl)chroman-4-one¹² revealed that both had the same chromanone skeleton. The difference between them was one quartet methylene was missing and a

^{*} Corresponding authors. E-mail addresses: jiangyi@ynu.edu.cn (Y. Jiang), hanli@mail.neu.edu.cn (L. Han).

Fig. 1. Structure and chiral analysis of violacin A (1). (A) The structure of 1; (B) The main HMBC correlations of 1; (C) The chiral analysis of 1. Column: CHIRALPAK[®] (0.46 cm I. D. × 25 cm, 5 μ m); Mobile phase: *n*-hexane/ethanol/trifluoroacetic acid = 80/20/0.1 ($\nu/\nu/\nu$); Flow rate: 1.0 ml/min; λ : 220 nm.

Table 1 $^{1}\rm{H}$ NMR (600 MHz) and $^{13}\rm{C}$ (150 MHz) NMR data of compound 1 in DMSO $d_{\rm{6.}}$

No.	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (J in Hz)	HMBC
2	100.3, C		
3	47.9, CH ₂	3.04, dd (15.9, 2.0) 2.60, d (15.9)	C-2, C-4, C-4a
4	191.0, C		
4a	112.3, C		
5	142.9, C		
6	113.0, CH	6.25, d (2.4)	C-4a, C-8, 5-CH ₃
7	163.1, C		
8	102.0, CH	6.14, d (2.4)	C-4a, C-6, C-7, C-8a
8a	161.3, C		
1′	52.8, CH ₂	3.02, d (14.9) 2.98, d (14.9)	C-2, C-3, C-2′
2′	205.6, C		
3′	32.3, CH ₃	2.19, s	C-1', C-2'
$5-CH_3$	23.0, CH ₃	2.45, s	C-4a, C-5, C-6
2-0H		7.08, d (2.0)	C-2, C-3
7-0H		10.35, brs	C-6, C-7, C-8

singlet methyl replaced a triplet methyl in **1**, these findings hinted the substitute at C-2 is 2-oxopropyl in **1**. HMBC correlations from H-1' ($\delta_{\rm H}$ 3.02, 2.98) to C-2 ($\delta_{\rm C}$ 100.3), C-3 ($\delta_{\rm C}$ 47.9), and C-2' ($\delta_{\rm C}$ 205.6), from H-3' ($\delta_{\rm H}$ 2.19) to C-1' ($\delta_{\rm C}$ 52.8) and C-2' ($\delta_{\rm C}$ 205.6) confirmed the structure (Fig. 1A, B). **1** was identified as a racemic mixture on the basis of chiral analysis by HPLC with a chiral column (Fig. 1C). Thus, the structure of **1** was determined to be (±)-2,7-dihydroxy-5-methyl-2-(2-oxopropyl)chroman-4-one, and named violacin A.¹³

Macrophages act as innate immune cells which play decisive roles in the primary response to inflammation.¹⁴ Lipopolysaccharide (LPS) activates macrophages to produce a series of pro-inflammatory cytokines and inflammatory mediators such as nitric oxide (NO), interleukin-1 β (IL-1 β), interleukin-6 (IL-6), and tumor necrosis factor (TNF- α).¹⁵ Excessive amount of pro-inflammatory cytokines produced by activated macrophages is responsible for a number of inflammatory and infectious diseases.¹⁶ LPS stimulated RAW264.7 cells are often used as a screening model to discover the anti-inflammatory agents.¹⁷ To investigate the anti-inflammatory activities of violacin A (**1**), the NO release and expression of IL-1 β , IL-6, and TNF- α in LPS-stimulated RAW264.7 cells were measured after treatment with violacin A through Griess assay and qRT-PCR methods.^{18,19} As shown in Fig. 2A, violacin A dose-dependently inhibited NO production in the LPS-stimulated cells. MTT assay at varying concentration of **1** (3.3–90 μ M) was carried out to exclude the cytotoxicity of **1** against RAW 264.7 cells.²⁰ Data (Fig. 2B) indicated that **1** had no effect on cell viability. In addition, the mRNA expression levels of IL-1 β , IL-6, and TNF- α were obviously inhibited in a dose-dependent manner in LPS-stimulated cells after treatment with **1** (Fig. 3). The data suggested that **1** could down-regulate pro-inflammatory cytokines expression to present anti-inflammatory potential.

Inducible nitric synthase (iNOS), an isoforms of NO synthases, catalyzes the production of nitric oxide (NO) from *L*-arginine in the cells. Therefore, inhibitory of overproduction of NO through blocking iNOS expression could be potential therapeutic approach for inflammation-associated diseases. Herein, the experiments were carried out to determine the effects of **1** on the mRNA and protein expression of iNOS.²¹ As presented in Fig. 4A, LPS stimulation obviously increased the iNOS protein level, whereas the stimulatory effects were blocked when the cells were pretreated with **1**. Consistent with Western blot analysis, **1** significantly suppressed LPS-induced gene expression of iNOS in a dose-dependent manner in RAW 264.7 cells (Fig. 4B). Results suggested that **1** could down-regulate LPS-stimulated iNOS expression to inhibit the production of NO in RAW 264.7 cells.

Nuclear factor- κ B (NF- κ B) signaling pathway plays a pivotal role in the progress of inflammation.²² Under normal physiological conditions, NF- κ B p65 is localized in the cytoplasm associated with regulatory proteins called inhibitors of κ B (I κ B). Upon activation, I κ B- α undergoes phosphorylation, ubiquitination and degradation, which results in NF- κ B p65 subunit being released and translocated to nucleus, where they bind to specific promoter regions of target genes, including pro-inflammatory genes.²³ The activation Download English Version:

https://daneshyari.com/en/article/7779447

Download Persian Version:

https://daneshyari.com/article/7779447

Daneshyari.com