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a b s t r a c t

A method of a floating frame of reference that performs splitting of a deformable solid into rigid and
deforming parts is presented within the context of non-smooth contact dynamics. The decomposition is
made in such a way that the deforming part of the velocity field does not contribute either to the motion
of the center of mass or the rotational motion. The corresponding numerical method that computes both
rigid and deforming motions is presented and extended to multi-body dynamics simulation allowing
non-smooth contact interactions, such as impacts and friction. Numerical experiments, where the
method is compared with a more traditionally used Total Lagrangian method, justify its preference as a
more efficient tool for the simulation of assemblies of stiff and massive objects.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

This paper presents and studies the application of the method of
a floating frame of reference to a simulation of solids, participating
in non-smooth dynamics.

The method of a floating frame of reference (for simplicity, it
shall be referred to as FFR) is a special type of a general family of so
called corotational methods. The key idea behind a corotational
method is a kinematical splitting into two of the reference
configuration of an element of a structure primarily discretized
with the Finite Element method (FEM). These are the base config-
uration and the corotated, or dynamic one. The base configuration
is kept fixed for the entire structural analysis, while the corotated
configuration is a result of the rigid body motion, i.e. superposition
of translation and rotation, of the base configuration. In general, the
dynamic configuration is element dependent and is defined for each
element separately. A far from complete list of the works on the
topic includes (Crisfield,1990; Bergan and Horrigmoe,1976; Rankin
and Brognan, 1986; Rankin and Nour-Omid, 1988; Belytschko and
Hsieh, 1973; Simo, 1985; Devloo et al., 2000; Areias et al., 2011;
Alsafadie et al., 2010; Felippa and Haugen, 2005).

The FFR method differs significantly from general corotational
methods by the fact that it requires only one dynamic configuration
for each element. Even more, this single moving frame of reference
is introduced without any connection to the elements or any other
type of structural discretization of the described solid, and there-
fore can be defined before even considering discretization in gen-
eral. The FFR method is intuitively more attractive and has been
known for over a century. It has been mostly used for computations
in flexible multi-body dynamics, where separate solids are con-
nected via bilateral constraints, typically smooth, (Cardona and
Geradin, 2001), (Veubeke, 1976). A brief overview of the method
in this area was given in (Shabana et al., 2007).

Variants of the FFR method are distinguished by the type of
attachment between the moving frame and the deformable body
itself. This is governed by the reference conditions (Schwertassek
et al., 1999). Depending on the selected reference conditions, the
translational and rotational coordinates associated with the body
frame vary differently during the motion. The motion of the
selected frame is referred to as reference motion. For example,
reference conditions result in the tangent frame, the chord frame or
the free frame, among others (Escalona et al., 2003). Reference
conditions are related to the boundary conditions that the selected
deformation shape functions must fulfil.

Our area of interest is a simulation of assemblies of bodies un-
dergoing non-smooth contact interactions such as shocks and
friction, with typically natural external forces such as gravity. Awell
known method to simulate dynamics of large assemblies of objects
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with such interactions is the Discrete Element method (DEM)
(Cundall and Hart, 1992). In DEM, typically only a minimal resolu-
tion of the internal deformations are performed as to allow more
computational resources for the overall system dynamics. The areas
of application of DEM include rocking avalanches (Banton et al.,
2009), (Manzella and Labiouse, 2009), masonry structures, gran-
ular systems (Ghaboussi and Barbosa, 1990). Even the most so-
phisticated continuous flow models usually fail to replace DEM in
representing accurate physical phenomena. As opposed to DEM, in
which the number of bodies ranges from thousands to hundreds of
thousands or even more (Mishra and Rajamani, 1992), we are
assuming a significantly smaller number of the participating solids,
though with the growing computer performance this number may
naturally grow as well. The bodies are assumed to fall under an
important restriction to eliminate a possibility of nonlinear defor-
mational behavior, such as bending. Hereafter bodies are seen as
massive blocks, which means no extremely thin bodies are
considered. This restriction also imposes large stiffness on the
participating bodies, for which the Young modulus is typically
positioned around values of order 109e1010 or larger. Unlike DEM,
we consider more internal degrees of freedom for the solids, which
explains our limitation in the number of the solids in the multi-
body dynamics but allows a more accurate simulation of these
solids.

This article focuses on the implementation of the FFR method in
the dynamics of several bodies and its integration into the non-
smooth contact framework pioneered by J. J. Moreau (1988),
(2004) and M. Jean (1999). This is a vastly growing field, and the
number of methods has been developed for that framework. Un-
fortunately, the absolute rigidity model for interacting bodies in a
studied collection as a simplification of the large stiffness model
may create indeterminacy (plurality of solutions) (Alart, 2014),
partly because of the specific nature of the employed interaction
laws. One of the ways to treat this problem is by incorporating a
finite yet large stiffness for the bodies, and therefore applying the
FEM analysis. This bears themost general solver relying on the Total
or Updated Lagrangian approach, also known in the engineering
community as the method of a large transformation and employing
the absolute nodal coordinate formulation (ANCF). The method
without any regard to contact is thoroughly described in
(Belytschko et al., 2000) and its implementation into contact
problemsmay be found in (Acary and Brogliato, 2008), (Koziara and
Bicanic, 2008). With an assumption of a small rotation, the
nonlinearity of the method is neglected, and it is renamed into the
method of small deformation.

Within the FFR framework, we shall be using the so-called
deformable body mean axis frame (Agrawal, 1984). When using
this frame, the degree of coupling between the reference co-
ordinates and the elastic coordinates is minimum, though not zero.
Neither the corotational method, nor the large transformation
approach seem as attractive for the non-smooth dynamics of stiff
massive solids as the FFR method with this frame. Assume the
solid's position field satisfies x ¼ x(X), where X and x reside in the
base and current configuration respectively. Then the trans-
formation gradient F may be polarly decomposed as

F ¼ vx
vX

¼ UO;

whereU is responsible for the deformation, andO is an orientation
as of a rigid body. The assumption for our case impliesOzconst for
the entire structure, therefore the general corotational method,
operating with arbitrarily changing O from element to element, is
overused. On the other hand, the large transformation approach is
not efficient computationally, due to the presence of the high

nonlinearity in the equations even in the absence of contact in-
teractions. The floating frame is intended for tracking the rotational
part of the solid, and the nonlinear deformations in this case are
completely eliminated from the point of view of that frame, which
allows for constant stiffness matrix in the computations
throughout the whole simulation. The remaining nonlinearity is
only due to rotations, which relaxes an iterative solution process.

Another attractive property of the FFR method is that the
floating frame, described above, may provide such characteristics of
the moving solid as its center of mass, orientation and angular
velocity (without operating with rigid body modes, coming from
the FEM discretization), which are the parameters of a purely rigid
body and are desirable for intuitive description of deformable, but
very stiff solids. For this reason, from now on we shall be referring
to the motion of such frame as “rigid motion” of the deformable
solid as opposed to more general term “reference motion”.

The paper has 4 sections following. As a theoretical base, Section
2 provides a formal kinematical theory for the most general body
structure. It is shown that the decomposition into the rigid and the
deforming motions for a single solid is always possible in the
kinematical sense regardless of the dynamical reasoning for the
motion. Although theoretically this splitting is possible for any kind
of deforming solids, computationally it is only meaningful in the
application area mentioned above, as too much deformationwould
create nonlinearity and the FFR method would not retain its ad-
vantageous status over the method of a large transformation. Note
this section is not operating with any sorts of spatial discretizations
of a solid and is based purely on the fundamental laws of me-
chanics. This section may present interest especially for theoretical
mechanicians. Section 3 introduces FEM method in the local frame
to resolve the deformational behavior and derives a stable second-
order accurate Newmark time-stepping scheme and then adapts
these results to the non-smooth contact dynamics of a general
multi-body system. Finally, Section 4 contains numerical experi-
ments that test the performance and accuracy of the method
compared to the large transformation method. Section 5 provides
the conclusion and further prospects.

2. The formalism

Everywhere below any bold symbol, for example a, describes a
vector with at least two components or a set of vectors. Blackboard
bold symbols, except for the real number set ℝ, denote operators,
tensors (wider than vectors) and their corresponding matrices.
Symbol � denotes vector product and5 denotes tensor product of
two vectors, i.e. a 5 b ¼ abT. Operation A : B returns the sum of all
products of the respective elements of the both matrices, i.e.P
i;j
AijBij.

2.1. Kinematics

Let the Euclidean system of coordinates Oxyz be an inertial
frame of reference (Landau and Lifshitz, 1976) called a global frame.
For a solid with density r and mass m, let x(X,t) denote a position
vector in the global frame of a material point with Lagrange co-
ordinatesX at time t. v(X,t) denotes the velocity vector of that point.
The set of all X is denoted V and they refer to the initial undeformed
(rigid) configuration of the solid.

The main idea behind a floating frame is that any motion of a
deformable body V may be described as the superposition of the
motions of the imaginary rigid and deforming parts (Shabana and
Schwertassek, 1998). For a currently used floating orthonormal
frame CXYZ and an imaginary rigid body frozen in it, with its center
of mass placed at the origin C, the velocity vR of that rigid body is
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