
Convergence of viscoelastic constraints to nonholonomic idealization

J. Deppler a, B. Braun b, A. Fidlin a, *, M. Hochbruck b

a Karlsruhe Institute of Technology, Institute of Engineering Mechancis, Karlsruhe, Germany
b Karlsruhe Institute of Technology, Institute for Applied and Numerical Mathematics, Karlsruhe, Germany

a r t i c l e i n f o

Article history:
Received 8 September 2014
Accepted 6 January 2016
Available online 19 January 2016

Keywords:
Viscoelastic contact
Convergence
Nonholonomic constraints

a b s t r a c t

Rolling motion, which is usually described by means of nonholonomic constraints, can occur in many
technical systems e.g. roller bearings or gear wheels in gearboxes. The idealized modeling of mechanical
multibody systems with rolling elements leads to differential algebraic equations (DAEs). The kinematical
condition of a vanishing relative velocity is enforced by constraint forces. However contact areas are not
ideally rigid, but compliant due to local deformations of asperities and elasticity of the contacting bodies.
For this reason a sensible physical description should take these effects into account. Thus the contact
forces are modeled in the present paper using a tangential viscoelastic force element in the contact. The
rolling motion is then enforced by applied forces, instead of constraint forces in the ideally rigid case. The
objective of this work is to show that under certain conditions, solutions of the general multibody system
with viscoelastic contact model converge to the solutions of the multibody system containing idealized
nonholonomic constraint equations, if the viscoelastic constants approach infinity. An ansatz in form of
an asymptotic series expansion with initial layer terms is introduced to prove the convergence under
appropriate assumptions on the viscoelastic parameters. In order to suppress high frequency oscillations
in the contact, the choice of the damping parameter is inspired by the critical damping, known in linear
systems theory.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Rolling contacts are usual in various technical systems. Gear
wheels in gearboxes, the motion of rolling elements in roller
bearings or the Euler disk (Caps et al., 2004) or even car tyres can be
mentioned here as examples. In most cases the constraint equa-
tions on velocity level enforcing a rolling motion cannot be inte-
grated, yielding nonholonomic constraint equations. Usually the
nonholonomic constraints can be incorporated into the equations
of motion by the method of Lagrange multipliers. This leads to the
equations of motion for a constrained multibody system with m
nonholonomic constraint equations

d
dt

vL
v _q

� vL
vq

� Q þ GðqÞTl ¼ 0;

GðqÞ _q ¼ 0:

Thus, the problem at hand is an index-2 differential algebraic

problem. The investigation of nonholonomic mechanical systems
led to a large variety of subspace methods. The main target of
these methods consists in introducing quasi coordinates or
generalized coordinates or velocities in order to obtain a system of
ordinary differential equations instead of differential algebraic
equations. If there are n generalized coordinates and m non-
integrable constraints, the changes of momentum and moment of
momentum evolve on an n � m manifold and are mapped into the
n dimensional coordinate space via kinematic equations. A path-
breaking work concerning nonholonomic mechanical systems was
the work done Caplygin (1897), see also Neimark and Fufaev
(1967). His interest was devoted to a special class of conserva-
tive nonholonomic systems, described by n generalized co-
ordinates, where only the first m generalized velocities can be
regarded as independent. The equations of motion were derived
under the following assumptions: The Lagrange function and the
constraint matrix do not depend on the integrals of the dependent
velocities. Those systems are usually referred to as Caplygin sys-
tems. Under certain circumstances it may be useful to introduce a
set of quasi coordinates instead of generalized coordinates in order
to reduce the size of the equations of motion. A well known
example are for instance Eulers equations, where the angular
velocities are introduced as quasi coordinates instead of a set of
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angles. This was already done by Caplygin. There are further ap-
proaches based on quasi coordinates, like the method introduced
by Hamel (1903). Voronets (1901) developed an approach to
derive the equations of motion of a mechanical system with
nonholonmic constraint equations without the limiting assump-
tions, that were made by Caplygin. Appell (1900) introduced a
more general approach for the derivation of the equations of
motion of a mechanical system in quasi coordinates, that holds for
both holonomic and nonholonomic systems. The approach leads
to a set of equations, that are usually referred to as Appell-Gibbs-
Equations. These equations were first introduced by Gibbs (1879),
but only for holonomic systems. Maggi (1901) proposed a method
to derive the equations of motion for a mechanical system with
nonholonomic constraints. The last approach, that shall be
mentioned here are Kanes dynamical equations, that can be
regarded as a special case of Maggis equations, see Kurdila et al.
(1990). Kane and Levinson (1985) derived them for both holo-
nomic and nonholonomic systems. For a Lagrangian derivation of
Kanes equations see Parsa (2007). All these subspace methods
describe the exact dynamics of the underlying system in the rigid
sense, without taking contact compliance, especially in tangential
direction, into account.

Regarded from a physical point of view, nonholonomic motions
are mainly caused by friction forces. These can be modeled in
various ways. Usually viscous damping forces are used in order to
describe a sticking state. However it may be useful from a physical
point of view, to take tangential compliance of a contact into ac-
count. Caratheodory (1933) came to the conclusion, that it is
impossible to approximate the motion of a sleigh, constrained by a
nonholonomic constraint, by modeling the friction force as viscous
damping. However Caratheodory's arguments cannot be regarded
as convincing, as is shown by Neimark and Fufaev (1967). Later
Karapetian (1981) showed, that Tikhonov's theorem can be applied
in order to prove the convergence of the viscous solution to the
idealized DAE solution, in case of describing the friction forces by
means of pure anisotropic viscous damping, if the dissipation co-
efficient approaches infinity. Kozlov (1983) investigated various
ways of passages to the limit. There are nearly an uncountable
number of publications concerning the convergency of the solution
of viscous friction models to the solution of the corresponding
differential algebraic equation. Levin and Levinson (1954) investi-
gate a system where the parameter ε > 0 multiplying the highest
derivative is of power r > 0. Convergency of the regularized prob-
lem to the differential algebraic problem is proven. For r ¼ 1
Hoppensteadt (1966) obtains quite similar results. O'Malley and
Flaherty (1980) use a series expansion with initial layer terms to
prove convergency. There exist also various approaches and pub-
lications concerning penalty methods for differential algebraic
problems. Baumgarte (1972) introduced a method to stabilize the
constraints. This method can be applied to holonomic and non-
holonomic constraint equations as well. Baumgartes idea is based
on an index reduction method. Ostermeyer (1983) proposed ap-
proaches based on control theory that regulates the constraint er-
ror to zero. L€otstedt (1985) proposed a method, that can be
regarded as a combination of Baumgartes method and singular
perturbations. He is capable to prove the convergency of the
regularized solution. Another approach to regularize a general in-
dex 3 differential algebraic problem in Hessenberg form is pro-
posed in Knorrenschild (1988). The main target of his work consists
in finding a derivative-free index reduction method. He introduces
a parasitic perturbation in the constraint equation which results in
a differential algebraic equation of index 2. Repeated introduction
of the parasitic perturbation in the equation finally results in an
index 1 problem, without having differentiated any equation.
Hanke and Eich (1994) used a quite similar approach. All of these

results were obtained for the case where the nonholonomic
constraint is approximated by tangential viscous damping forces.

However it is important to mention here, that our main target
does not consist in avoiding the need to solve a differential alge-
braic problem. Instead our main target is to take both tangential
viscous damping forces and tangential contact elasticity into ac-
count. In the present paper we investigate a viscoelastic idealiza-
tion of nonholonomic constraints, that is motivated by physical
considerations. Two solids with convex surfaces rolling on each
other possess a tangential contact compliance, which is in contrast
to the usual penalty methods taken into account. In our case the
viscoelastic tangential contact model is not attributed to one of the
solids, instead it is modeled as an averaged contact compliance.
Pure rolling is equal to sticking, with kinematically repositioned
contact point. In case of pure viscous damping, the contact point is
always in the sliding state, which contradicts real physical behavior.
Usually sticking is modeled by introducing an elasticity in the
contact as demonstrated by Vielsack (1996). Here the constraint is
mainly enforced by the elasticity, the dissipative terms help to
avoid oscillations in the contact. In an earlier work Stamm (2011)
applied this kind of viscoelastic formulation to a tangential con-
tact law, extending the classical laws of friction, like the Coulomb
model, to distributed contacts, in order to circumvent the problem
of indeterminacy in the sticking state. It would be advantageous, if
the idealized rigid formulation approximated the description of a
contact law by means of viscoelastic forces in case of infinitely stiff
chosen viscoelastic parameters. Thus the objective of this work is to
show the convergence of the viscoelastic description to the ideal-
ized nonholonomic rigid description in a strictly mathematical
sense. The paper is structured in the following way. In Section 2 the
statement of the problem is given. After the derivation of the
viscoelastic description, a theorem is proven, which states
convergency of the viscoelastic description to the ideally rigid
description. In Section 3 the statement of the proof is confirmed by
two numerical examples. In case of the first example, an analytical
solution exists, which is compared to the numerical results.

2. Statement of the problem

The motion of a general multibody system underlying linear
nonholonomic constraint equations can be described by means of
the following index-2 differential algebraic equation system:

MðbqÞ€bq ¼ F
�bq; _bq; t�� GT ðbqÞL; t2I ¼ ½t0; te�; (1a)

0 ¼ GðbqÞ _bq (1b)

bqðt0Þ ¼ bq0; _bqðt0Þ ¼ _bq0: (1c)

where MðqÞ2ℝn�n denotes the symmetric and positive definite
mass matrix, GðqÞ2ℝm�n the constraint matrix and Fðq; _q; tÞ2ℝn

contains all external forces acting on the system. Here and in the
following use the short notation

_4ðjÞ ¼ d
dt

4ðjðtÞÞ

for differentiable functions 4 of and j. Moreover, we omit the ar-
guments of M, F, and G if they are clear from the context.

Assumption 1 (Differential algebraic initial value problem). We
assume that GðqÞ2ℝm�n and Fðq; _q; tÞ2ℝn are sufficiently smooth,
the matrix G(q) is assumed to have full rank m. Moreover, we assume
that the initial data (1c) is consistently chosen.
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