Contents lists available at ScienceDirect

Solar Energy Materials & Solar Cells

journal homepage: www.elsevier.com/locate/solmat

Passivation of c-Si surfaces by ALD tantalum oxide capped with PECVD silicon nitride

Yimao Wan*, James Bullock, Andres Cuevas

Research School of Engineering, The Australian National University, Canberra, ACT 0200, Australia

ARTICLE INFO

ABSTRACT

Article history: Received 31 March 2015 Received in revised form 21 May 2015 Accepted 22 May 2015 Available online 16 June 2015

Keywords: Surface passivation Tantalum oxide Silicon nitride Solar cells

We demonstrate effective passivation of a variety of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited (ALD) tantalum oxide (Ta_2O_5) underneath a capping silicon nitride (SiN_x) layer by plasma enhanced chemical vapor deposited (PECVD). Surface recombination is investigated as a function of Ta₂O₅ thickness for *p*- and *n*-type Si substrates, both with and without boron (p^+) or phosphorus (n^+) diffusions. It is found that the recombination decreases markedly with increasing Ta_2O_5 thickness on *p*, *n* and p^+ c-Si surfaces, but it follows an opposite trend on n^+ c-Si surfaces. In all four cases, the surface recombination velocity plateaus at a Ta₂O₅ thickness of 12 nm. The thermal stability of surface passivation by Ta_2O_5/SiN_x is examined by subjecting p^+ and n^+ diffused wafers to a typical solar cell metallization firing process, finding that it is essentially stable on p^+ diffusions, but not on n^+ ones, regardless of Ta_2O_5 thickness. We also evaluate the passivating properties of the Ta_2O_5/SiN_x stack on planar {100}, planar {111}, and textured *n*-type undiffused silicon surfaces, finding that (i) planar {111} Si exhibits a 4.6-fold higher recombination than planar {100} Si, and (ii) recombination at a textured surface is approximately equivalent to that at a planar {111} after surface area correction. Furthermore, the areacorrected recombination ratio of textured to planar {100} boron diffused p^+ regions is shown to be 2.2 for three different diffusions with sheet resistances at 56, 122, and 214 Ω /sq. Finally, optical simulation reveals a low reflection and negligible absorption loss for the Ta_2O_5/SiN_x stack. The Ta_2O_5/SiN_x stack is thus demonstrated to be an excellent surface passivation and antireflection coating for high efficiency silicon solar cells.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years double-side passivated silicon solar cells are finding widespread acceptance in photovoltaic pilot and production lines, thanks to the continuous improvement in surface passivation of *p*-type crystalline silicon (c-Si). One of the key requirements in passivating effectively the *p*-type surfaces is a high density of negative insulator charge, which produces a high concentration of majority holes, and consequently a low concentration of minority electrons at the c-Si surface. The highly negative charged dielectrics in conjunction with a low interface defect density is of high interest to silicon photovoltaics in (i) overcoming efficiency limitations imposed by the use of conventional Al-alloyed back surface on *p*-type silicon solar cells, and (ii) enabling the transferal to *n*-type silicon cells with its concomitant advantages [1]. Aluminum oxide (Al₂O₃) is the best-established negatively charged dielectric ($\sim 10^{12}-10^{13}$ cm⁻²), and

is commonly used to passivate p-type silicon in photovoltaic laboratories and industry [2–4]. Nevertheless, several other dielectrics including titanium oxide [5,6], aluminum nitride [7], hafnium oxide [8] and gallium oxide [9], also possess a negative charge and have been reported to provide a reasonable level of surface passivation.

Recently, we have found a high level of surface passivation by another negatively charged dielectric—tantalum oxide (Ta₂O₅) [10]. By capping a 12 nm thick Ta₂O₅ prepared by atomic layer deposition (ALD) with a 85 nm silicon nitride (SiN_x) layer prepared by plasma enhanced chemical vapor deposition (PECVD), we obtained a low surface recombination velocity (< 5 cm/s) on low-resistivity ($\leq 1.0 \Omega$ cm) *p*-type and *n*-type c-Si wafers. As revealed by capacitance–voltage measurements in Ref. [10], a negative fixed insulator charge density of -1.8×10^{12} cm⁻² was found in the uncapped Ta₂O₅ films, and -1.0×10^{12} cm⁻² in the Ta₂O₅/SiN_x stack. Given the possible beneficial effect of a negative charge was weakened upon SiN_x capping, the substantial improvement in surface passivation after SiN_x capping can be primarily attributed to a reduction in the defect density at the Ta₂O₅/c-Si interface, presumably via hydrogenation during SiN_x deposition.

^{*} Corresponding author. E-mail address: yimao.wan@anu.edu.au (Y. Wan).

Furthermore, Ta₂O₅ also has an excellent optical properties, with a relatively high refractive index and a negligible absorption of the visible sunlight [11], making it a promising dielectric for photovoltaic applications, both as a passivating and antireflection coating (ARC) layer. In this contribution, we further explore such applications by examining the effect of Ta₂O₅ thickness on the recombination rate at several types of c-Si surfaces, including *p*-type and *n*-type undiffused, boron-diffused *p*⁺, and phosphorus-diffused *n*⁺. We also examine the effect of crystal orientation and surface morphology on the recombination rate, including planar {100}, planar {111}, and textured silicon with random upright pyramids. Finally, the optical properties of Ta₂O₅/SiN_x stacks is simulated.

2. Experimental details

Lifetime samples for Section 3.1 were fabricated on 0.8 Ω cm *p*-type and 1.0 Ω cm *n*-type, {100} float-zoned (FZ) low-resistivity c-Si wafers with a thickness of 275 and 390 μ m, respectively; and phosphorus diffused (*n*⁺) 100 Ω cm *p*-type and boron diffused (*p*⁺) 100 Ω cm *n*-type FZ high-resistivity c-Si wafers with a thickness of 390 and 280 μ m, respectively. The undiffused wafers were etched in tetramethylammonium hydroxide (TMAH, 25 wt%) at ~85 °C to remove saw damage. Phosphorus and boron diffusions were performed in quartz tube furnaces using liquid POCl₃ and BBr₃ sources, resulting in sheet resistances of 120 ± 5 Ω /sq for both diffusions as measured by four-point probe.

Besides the same 1.0 Ω cm *n*-type, {100}-oriented wafers used in Section 3.1, lifetime samples for Section 3.2 also includes (i) {111}-oriented planar *n*-type FZ silicon wafers with a resistivity of 1.0 Ω cm and a thickness of 290 μ m, and (ii) textured silicon wafers with random upright pyramids, which were prepared by immersing the as-cut 1.0 Ω cm *n*-type, {100} samples in an alkaline solution of TMAH, deionized water, isopropyl alcohol (IPA) and dissolved silicon at a temperature of 85 °C for 60 min [12–16]. In addition, Section 3.2 also includes planar and random pyramidally textured boron-diffused samples with three different sheet resistances of 56, 122, and 214 Ω /sq.

All samples were cleaned by the RCA (Radio Corporation of America) procedure and dipped in HF to remove any remaining oxide prior to Ta₂O₅ deposition. The Ta₂O₅ films were prepared by a thermal ALD system (R200 Advanced, Picosun) using Tantalum Ethoxide as tantalum precursor, H₂O as the oxidant, and N₂ as the purge gas. The deposition temperature was 250 °C, and the deposition rate was determined to be 0.3 Å/cycle by ex-situ spectroscopic ellipsometry (J.A. Woolam M2000 ellipsometer). The film thickness and wavelength-dependent refractive index n and absorption coefficient α were determined by fitting polarized reflectance using the Tauc–Lorentz model [17]. Deposition cycles were varied to obtain a series of thickness ranging from 3 to 24 nm. The capping SiN_x layers were prepared by a microwave/ radio-frequency PECVD reactor (AK400, Roth & Rau). A detailed description of the reactor and deposition conditions is given elsewhere [18]. The capping SiN_x has a thickness of 85 nm and a refractive index of 1.93 at 632 nm.

The effective excess carrier lifetime $\tau_{\rm eff}$ as a function of excess carrier density Δn was measured using a Sinton Instruments WCT-120 photoconductance tool [19]. Neglecting Shockley–Read–Hall recombination in the bulk of the wafer, the upper limit of the effective surface recombination velocity $S_{\rm eff,UL}$ was calculated according to

$$S_{\text{eff,UL}} = \frac{W}{2} \left(\frac{1}{\tau_{\text{eff}}} - \frac{1}{\tau_{\text{intrinsic}}} \right), \tag{1}$$

where *W* is the Si substrate thickness and $\tau_{\text{intrinsic}}$ is the intrinsic bulk lifetime in Si parameterized by Richter et al. [20]. For the heavily diffused p^+ and n^+ Si samples, the recombination current density J_0 is extracted from the lifetime measurement by employing the technique developed by Kane and Swanson [21] with an intrinsic carrier concentration $n_i = 8.6 \times 10^9 \text{ cm}^{-3}$ at 25 °C. The lifetime measurements were conducted in transient mode, leading to an independence of optical factor on determination of J_0 .

3. Results and discussion

3.1. Effect of Ta_2O_5 thickness on surface recombination

Fig. 1(a) depicts the passivation quality provided by as-deposited Ta₂O₅ and SiN_x-capped Ta₂O₅ films on *p*- and *n*-type undiffused c-Si samples for a range of Ta₂O₅ thicknesses. As can be seen, the as-deposited Ta₂O₅ films provide a poor surface passivation on both *p*- and *n*-type wafers with *S*_{eff,UL} greater than 500 cm/s, regardless of the Ta₂O₅ thickness. Note that the passivation could not be improved by thermal annealing in 5% H₂ forming gas at temperatures between 250 and 450 °C. By contrast, upon capping the ALD Ta₂O₅ thickness. As the Ta₂O₅ thickness increases, *S*_{eff,UL} on both *p*- and *n*-type wafers first decreases, and then tends to saturate when the Ta₂O₅ thickness exceeds 12 nm. The lowest *S*_{eff,UL} we obtained is 5.0 cm/s and 3.2 cm/s at $\Delta n = 10^{15}$ cm⁻³ on *p*-type and *n*-type c-Si wafers, respectively.

The passivation provided by the Ta₂O₅/SiN_x stack on borondiffused p^+ wafers is also found to be excellent. Fig. 2 plots the recombination current density J_0 as a function of Ta₂O₅ thickness for boron-diffused p^+ and phosphorus-diffused n^+ regions. For reference, the J_0 for ALD Al₂O₃-passivated p^+ and PECVD SiN_x-passivated n^+ are also included as dashed lines. The deposition details of ALD Al₂O₃ can be found in Ref. [22]. The passivating SiN_x was deposited using the same process parameters as those for the capping SiN_x. Note that the as-deposited Ta₂O₅ without SiN_x capping provides little passivation on the diffused samples (not shown in Fig. 2). As can be seen, the Ta₂O₅/SiN_x stack provides a high level of surface passivation of p^+ surfaces,

Fig. 1. The upper limit to surface recombination velocity $S_{eff,UL}$ at $\Delta n = 10^{15} \text{ cm}^{-3}$ as a function of the Ta₂O₅ thickness on 0.8 Ω cm *p*-type and 1.0 Ω cm *n*-type Si wafers when passivated by Ta₂O₅ films and Ta₂O₅/SiN_x stacks.

Download English Version:

https://daneshyari.com/en/article/77796

Download Persian Version:

https://daneshyari.com/article/77796

Daneshyari.com